Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

16 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Machine learning to predict the long-term risk of myocardial infarction and cardiac death based on clinical risk, coronary calcium, and epicardial adipose tissue: a prospective study.
Commandeur F, Slomka PJ, Goeller M, Chen X, Cadet S, Razipour A, McElhinney P, Gransar H, Cantu S, Miller RJH, Rozanski A, Achenbach S, Tamarappoo BK, Berman DS, Dey D. Commandeur F, et al. Among authors: razipour a. Cardiovasc Res. 2020 Dec 1;116(14):2216-2225. doi: 10.1093/cvr/cvz321. Cardiovasc Res. 2020. PMID: 31853543 Free PMC article. Clinical Trial.
Relationship between changes in pericoronary adipose tissue attenuation and coronary plaque burden quantified from coronary computed tomography angiography.
Goeller M, Tamarappoo BK, Kwan AC, Cadet S, Commandeur F, Razipour A, Slomka PJ, Gransar H, Chen X, Otaki Y, Friedman JD, Cao JJ, Albrecht MH, Bittner DO, Marwan M, Achenbach S, Berman DS, Dey D. Goeller M, et al. Among authors: razipour a. Eur Heart J Cardiovasc Imaging. 2019 Jun 1;20(6):636-643. doi: 10.1093/ehjci/jez013. Eur Heart J Cardiovasc Imaging. 2019. PMID: 30789223 Free PMC article.
Deep Learning-Based Quantification of Epicardial Adipose Tissue Volume and Attenuation Predicts Major Adverse Cardiovascular Events in Asymptomatic Subjects.
Eisenberg E, McElhinney PA, Commandeur F, Chen X, Cadet S, Goeller M, Razipour A, Gransar H, Cantu S, Miller RJH, Slomka PJ, Wong ND, Rozanski A, Achenbach S, Tamarappoo BK, Berman DS, Dey D. Eisenberg E, et al. Among authors: razipour a. Circ Cardiovasc Imaging. 2020 Feb;13(2):e009829. doi: 10.1161/CIRCIMAGING.119.009829. Epub 2020 Feb 17. Circ Cardiovasc Imaging. 2020. PMID: 32063057 Free PMC article. Clinical Trial.
Epicardial adipose tissue is associated with extent of pneumonia and adverse outcomes in patients with COVID-19.
Grodecki K, Lin A, Razipour A, Cadet S, McElhinney PA, Chan C, Pressman BD, Julien P, Maurovich-Horvat P, Gaibazzi N, Thakur U, Mancini E, Agalbato C, Menè R, Parati G, Cernigliaro F, Nerlekar N, Torlasco C, Pontone G, Slomka PJ, Dey D. Grodecki K, et al. Among authors: razipour a. Metabolism. 2021 Feb;115:154436. doi: 10.1016/j.metabol.2020.154436. Epub 2020 Nov 19. Metabolism. 2021. PMID: 33221381 Free PMC article.
Machine learning integration of circulating and imaging biomarkers for explainable patient-specific prediction of cardiac events: A prospective study.
Tamarappoo BK, Lin A, Commandeur F, McElhinney PA, Cadet S, Goeller M, Razipour A, Chen X, Gransar H, Cantu S, Miller RJ, Achenbach S, Friedman J, Hayes S, Thomson L, Wong ND, Rozanski A, Slomka PJ, Berman DS, Dey D. Tamarappoo BK, et al. Among authors: razipour a. Atherosclerosis. 2021 Feb;318:76-82. doi: 10.1016/j.atherosclerosis.2020.11.008. Epub 2020 Nov 13. Atherosclerosis. 2021. PMID: 33239189 Free PMC article.
Metabolic syndrome, fatty liver, and artificial intelligence-based epicardial adipose tissue measures predict long-term risk of cardiac events: a prospective study.
Lin A, Wong ND, Razipour A, McElhinney PA, Commandeur F, Cadet SJ, Gransar H, Chen X, Cantu S, Miller RJH, Nerlekar N, Wong DTL, Slomka PJ, Rozanski A, Tamarappoo BK, Berman DS, Dey D. Lin A, et al. Among authors: razipour a. Cardiovasc Diabetol. 2021 Jan 29;20(1):27. doi: 10.1186/s12933-021-01220-x. Cardiovasc Diabetol. 2021. PMID: 33514365 Free PMC article.
Deep learning-enabled coronary CT angiography for plaque and stenosis quantification and cardiac risk prediction: an international multicentre study.
Lin A, Manral N, McElhinney P, Killekar A, Matsumoto H, Kwiecinski J, Pieszko K, Razipour A, Grodecki K, Park C, Otaki Y, Doris M, Kwan AC, Han D, Kuronuma K, Flores Tomasino G, Tzolos E, Shanbhag A, Goeller M, Marwan M, Gransar H, Tamarappoo BK, Cadet S, Achenbach S, Nicholls SJ, Wong DT, Berman DS, Dweck M, Newby DE, Williams MC, Slomka PJ, Dey D. Lin A, et al. Among authors: razipour a. Lancet Digit Health. 2022 Apr;4(4):e256-e265. doi: 10.1016/S2589-7500(22)00022-X. Lancet Digit Health. 2022. PMID: 35337643 Free PMC article.
Quantitative Burden of COVID-19 Pneumonia on Chest CT Predicts Adverse Outcomes: A Post-Hoc Analysis of a Prospective International Registry.
Grodecki K, Lin A, Cadet S, McElhinney PA, Razipour A, Chan C, Pressman B, Julien P, Maurovich-Horvat P, Gaibazzi N, Thakur U, Mancini E, Agalbato C, Menè R, Parati G, Cernigliaro F, Nerlekar N, Torlasco C, Pontone G, Slomka PJ, Dey D. Grodecki K, et al. Among authors: razipour a. Radiol Cardiothorac Imaging. 2020 Oct 1;2(5):e200389. doi: 10.1148/ryct.2020200389. eCollection 2020 Oct. Radiol Cardiothorac Imaging. 2020. PMID: 33778629 Free PMC article.
Rapid quantification of COVID-19 pneumonia burden from computed tomography with convolutional long short-term memory networks.
Killekar A, Grodecki K, Lin A, Cadet S, McElhinney P, Razipour A, Chan C, Pressman BD, Julien P, Chen P, Simon J, Maurovich-Horvat P, Gaibazzi N, Thakur U, Mancini E, Agalbato C, Munechika J, Matsumoto H, Menè R, Parati G, Cernigliaro F, Nerlekar N, Torlasco C, Pontone G, Dey D, Slomka P. Killekar A, et al. Among authors: razipour a. J Med Imaging (Bellingham). 2022 Sep;9(5):054001. doi: 10.1117/1.JMI.9.5.054001. Epub 2022 Sep 6. J Med Imaging (Bellingham). 2022. PMID: 36090960 Free PMC article.
16 results