Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

37,934 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
The radiomics-based tumor heterogeneity adds incremental value to the existing prognostic models for predicting outcome in localized clear cell renal cell carcinoma: a multicenter study.
Yang G, Nie P, Yan L, Zhang M, Wang Y, Zhao L, Li M, Xie F, Xie H, Li X, Xiang F, Wang N, Cheng N, Zhao X, Wang N, Wang Y, Chen C, Yun C, Cui J, Duan S, Zhang R, Hao D, Wang X, Wang Z, Niu H. Yang G, et al. Among authors: zhao x, zhao l. Eur J Nucl Med Mol Imaging. 2022 Jul;49(8):2949-2959. doi: 10.1007/s00259-022-05773-1. Epub 2022 Mar 28. Eur J Nucl Med Mol Imaging. 2022. PMID: 35344062
A CT-based deep learning radiomics nomogram outperforms the existing prognostic models for outcome prediction in clear cell renal cell carcinoma: a multicenter study.
Nie P, Yang G, Wang Y, Xu Y, Yan L, Zhang M, Zhao L, Wang N, Zhao X, Li X, Cheng N, Wang Y, Chen C, Wang N, Duan S, Wang X, Wang Z. Nie P, et al. Among authors: zhao x, zhao l. Eur Radiol. 2023 Dec;33(12):8858-8868. doi: 10.1007/s00330-023-09869-6. Epub 2023 Jun 30. Eur Radiol. 2023. PMID: 37389608
A preoperative CT-based deep learning radiomics model in predicting the stage, size, grade and necrosis score and outcome in localized clear cell renal cell carcinoma: A multicenter study.
Nie P, Liu S, Zhou R, Li X, Zhi K, Wang Y, Dai Z, Zhao L, Wang N, Zhao X, Li X, Cheng N, Wang Y, Chen C, Xu Y, Yang G. Nie P, et al. Among authors: zhao x, zhao l. Eur J Radiol. 2023 Sep;166:111018. doi: 10.1016/j.ejrad.2023.111018. Epub 2023 Jul 29. Eur J Radiol. 2023. PMID: 37562222
37,934 results
You have reached the last available page of results. Please see the User Guide for more information.