Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

8 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Colorectal cancer risk stratification on histological slides based on survival curves predicted by deep learning.
Höhn J, Krieghoff-Henning E, Wies C, Kiehl L, Hetz MJ, Bucher TC, Jonnagaddala J, Zatloukal K, Müller H, Plass M, Jungwirth E, Gaiser T, Steeg M, Holland-Letz T, Brenner H, Hoffmeister M, Brinker TJ. Höhn J, et al. Among authors: kiehl l. NPJ Precis Oncol. 2023 Sep 26;7(1):98. doi: 10.1038/s41698-023-00451-3. NPJ Precis Oncol. 2023. PMID: 37752266 Free PMC article.
Deep learning approach to predict sentinel lymph node status directly from routine histology of primary melanoma tumours.
Brinker TJ, Kiehl L, Schmitt M, Jutzi TB, Krieghoff-Henning EI, Krahl D, Kutzner H, Gholam P, Haferkamp S, Klode J, Schadendorf D, Hekler A, Fröhling S, Kather JN, Haggenmüller S, von Kalle C, Heppt M, Hilke F, Ghoreschi K, Tiemann M, Wehkamp U, Hauschild A, Weichenthal M, Utikal JS. Brinker TJ, et al. Among authors: kiehl l. Eur J Cancer. 2021 Sep;154:227-234. doi: 10.1016/j.ejca.2021.05.026. Epub 2021 Jul 20. Eur J Cancer. 2021. PMID: 34298373 Free article.
Deep learning can predict lymph node status directly from histology in colorectal cancer.
Kiehl L, Kuntz S, Höhn J, Jutzi T, Krieghoff-Henning E, Kather JN, Holland-Letz T, Kopp-Schneider A, Chang-Claude J, Brobeil A, von Kalle C, Fröhling S, Alwers E, Brenner H, Hoffmeister M, Brinker TJ. Kiehl L, et al. Eur J Cancer. 2021 Nov;157:464-473. doi: 10.1016/j.ejca.2021.08.039. Epub 2021 Oct 11. Eur J Cancer. 2021. PMID: 34649117 Free article.
Predicting benefit from PARP inhibitors using deep learning on H&E-stained ovarian cancer slides.
Marmé F, Krieghoff-Henning EI, Kiehl L, Wies C, Hauke J, Hahnen E, Harter P, Schouten PC, Brodkorb T, Kayali M, Heitz F, Zamagni C, González-Martin A, Treilleux I, Kommoss S, Prieske K, Gaiser T, Fröhling S, Ray-Coquard I, Pujade-Lauraine E, Brinker TJ. Marmé F, et al. Among authors: kiehl l. Eur J Cancer. 2024 Dec 26;216:115199. doi: 10.1016/j.ejca.2024.115199. Online ahead of print. Eur J Cancer. 2024. PMID: 39742559 Free article.