Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

1,696 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Skin lesions of face and scalp - Classification by a market-approved convolutional neural network in comparison with 64 dermatologists.
Haenssle HA, Winkler JK, Fink C, Toberer F, Enk A, Stolz W, Deinlein T, Hofmann-Wellenhof R, Kittler H, Tschandl P, Rosendahl C, Lallas A, Blum A, Abassi MS, Thomas L, Tromme I, Rosenberger A; Reader study level-I and level-II Groups Christina Alt. Haenssle HA, et al. Among authors: blum a. Eur J Cancer. 2021 Feb;144:192-199. doi: 10.1016/j.ejca.2020.11.034. Epub 2020 Dec 25. Eur J Cancer. 2021. PMID: 33370644
Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts.
Haggenmüller S, Maron RC, Hekler A, Utikal JS, Barata C, Barnhill RL, Beltraminelli H, Berking C, Betz-Stablein B, Blum A, Braun SA, Carr R, Combalia M, Fernandez-Figueras MT, Ferrara G, Fraitag S, French LE, Gellrich FF, Ghoreschi K, Goebeler M, Guitera P, Haenssle HA, Haferkamp S, Heinzerling L, Heppt MV, Hilke FJ, Hobelsberger S, Krahl D, Kutzner H, Lallas A, Liopyris K, Llamas-Velasco M, Malvehy J, Meier F, Müller CSL, Navarini AA, Navarrete-Dechent C, Perasole A, Poch G, Podlipnik S, Requena L, Rotemberg VM, Saggini A, Sangueza OP, Santonja C, Schadendorf D, Schilling B, Schlaak M, Schlager JG, Sergon M, Sondermann W, Soyer HP, Starz H, Stolz W, Vale E, Weyers W, Zink A, Krieghoff-Henning E, Kather JN, von Kalle C, Lipka DB, Fröhling S, Hauschild A, Kittler H, Brinker TJ. Haggenmüller S, et al. Among authors: blum a. Eur J Cancer. 2021 Oct;156:202-216. doi: 10.1016/j.ejca.2021.06.049. Epub 2021 Sep 8. Eur J Cancer. 2021. PMID: 34509059 Free article.
Observational study investigating the level of support from a convolutional neural network in face and scalp lesions deemed diagnostically 'unclear' by dermatologists.
Kommoss KS, Winkler JK, Mueller-Christmann C, Bardehle F, Toberer F, Stolz W, Kraenke T, Hofmann-Wellenhof R, Blum A, Enk A, Rosenberger A, Haenssle HA. Kommoss KS, et al. Among authors: blum a. Eur J Cancer. 2023 May;185:53-60. doi: 10.1016/j.ejca.2023.02.025. Epub 2023 Mar 5. Eur J Cancer. 2023. PMID: 36963352
Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition.
Winkler JK, Fink C, Toberer F, Enk A, Deinlein T, Hofmann-Wellenhof R, Thomas L, Lallas A, Blum A, Stolz W, Haenssle HA. Winkler JK, et al. Among authors: blum a. JAMA Dermatol. 2019 Oct 1;155(10):1135-1141. doi: 10.1001/jamadermatol.2019.1735. JAMA Dermatol. 2019. PMID: 31411641 Free PMC article.
Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions.
Haenssle HA, Fink C, Toberer F, Winkler J, Stolz W, Deinlein T, Hofmann-Wellenhof R, Lallas A, Emmert S, Buhl T, Zutt M, Blum A, Abassi MS, Thomas L, Tromme I, Tschandl P, Enk A, Rosenberger A; Reader Study Level I and Level II Groups. Haenssle HA, et al. Among authors: blum a. Ann Oncol. 2020 Jan;31(1):137-143. doi: 10.1016/j.annonc.2019.10.013. Ann Oncol. 2020. PMID: 31912788 Free article.
1,696 results