Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation

Search Page

Filters

My Custom Filters

Publication date

Text availability

Article attribute

Article type

Additional filters

Article Language

Species

Sex

Age

Other

Search Results

7,303 results

Filters applied: . Clear all
Results are displayed in a computed author sort order. The Publication Date timeline is not available.
Page 1
Reverse vessel remodeling but not coronary plaque regression could predict future cardiovascular events in ACS patients with intensive statin therapy--the extended JAPAN-ACS study.
Miyauchi K, Daida H, Morimoto T, Hiro T, Kimura T, Nakagawa Y, Yamagishi M, Ozaki Y, Kadota K, Kimura K, Hirayama A, Kimura K, Hasegawa Y, Uchiyama S, Matsuzaki M; JAPAN-ACS Investigators. Miyauchi K, et al. Among authors: kimura k, kimura t. Circ J. 2012;76(4):825-32. doi: 10.1253/circj.cj-12-0135. Circ J. 2012. PMID: 22451449 Free article.
Efficacy of tranilast in preventing exacerbating cardiac function and death from heart failure in muscular dystrophy patients with advanced-stage heart failure: a single-arm, open-label, multicenter study.
Matsumura T, Fukudome T, Motoyoshi Y, Nakamura A, Kuru S, Segawa K, Kitao R, Watanabe C, Tamura T, Takahashi T, Hashimoto H, Sekimizu M, Saito AM, Asakura M, Kimura K, Iwata Y. Matsumura T, et al. Among authors: kimura k. Orphanet J Rare Dis. 2025 Jan 9;20(1):13. doi: 10.1186/s13023-025-03538-1. Orphanet J Rare Dis. 2025. PMID: 39789553 Free PMC article.
Identification of key gene signatures for predicting chemo-immunotherapy efficacy in extensive-stage small-cell lung cancer using machine learning.
Fujimoto D, Shibaki R, Kimura K, Haratani K, Tamiya M, Kijima T, Sato Y, Hata A, Yokoyama T, Taniguchi Y, Uchida J, Tanaka H, Furuya N, Miura S, Onishi MI, Sakata S, Miyauchi E, Yamamoto N, Koh Y, Akamatsu H. Fujimoto D, et al. Among authors: kimura k. Lung Cancer. 2025 Jan 2;199:108079. doi: 10.1016/j.lungcan.2024.108079. Online ahead of print. Lung Cancer. 2025. PMID: 39787635
7,303 results