In this research, highly efficient heterogeneous bifunctional (BF) electrocatalysts (ECs) have been strategically designed by Fe coordination (CR ) complexes, [Fe2 L2 (H2 O)2 Cl2 ] (C1) and [Fe2 L2 (H2 O)2 (SO4 )].2(CH4 O) (C2) where the high seven CR number synergistically modifies the electronic environment of the Fe centre for facilitation of H2 O electrolysis. The electronic status of Fe and its adjacent atomic sites have been further modified by the replacement of -Cl- in C1 by -SO4 2- in C2. Interestingly, compared to C1, the O-S-O bridged C2 reveals superior BF activity with extremely low overpotential (η) at 10 mA cm-2 (140 mVOER , 62 mVHER ) and small Tafel slope (120.9 mV dec-1 OER , 45.8 mV dec-1 HER ). Additionally, C2 also facilitates a high-performance alkaline H2 O electrolyzer with cell voltage of 1.54 V at 10 mA cm-2 and exhibits remarkable long-term stability. Thus, exploration of the intrinsic properties of metal-organic framework (MOF)-based ECs opens up a new approach to the rational design of a wide range of molecular catalysts.
Keywords: Electrocatalysis; Heptacoordinated Fe-Complex; Hydrogen Energy; Ligand Effect; Water Splitting.
© 2023 Wiley-VCH GmbH.