Right ventricular (RV) remodeling in hypoplastic left heart syndrome (HLHS) begins prenatally and continues through staged palliations. However, it is unclear if the most marked observed remodeling post-Norwood is secondary to cardiopulmonary bypass (CPB) exposure or if it is an adaptation intrinsic to the systemic RV. This study aims to determine the impact of CPB on RV remodeling in HLHS. Echocardiograms of HLHS survivors undergoing stage 1 Norwood (n = 26) or Hybrid (n = 20) were analyzed at pre- and post-stage 1, pre- and post-bidirectional cavo-pulmonary anastomosis (BCPA), and pre-Fontan. RV fractional area change (FAC), vector velocity imaging for longitudinal & derived circumferential deformation (global radial shortening (GRS) = peak radial displacement/end-diastolic diameter), and deformation ratio (longitudinal/ circumferential) were assessed. Both groups had similar age, clinical status and functional parameters pre-stage 1. No difference in RV size and sphericity at any stage between groups. RVFAC was normal (> 35%) throughout for both groups. Both Norwood and Hybrid patients had increased GRS (p = 0.0001) post-stage 1 and corresponding unchanged longitudinal strain, resulting in decreased deformation ratio (greater relative RV circumferential contraction), p = 0.0001. Deformation ratio remained decreased in both groups in subsequent stages. Irrespective of timing of the first CPB exposure, both Norwood and Hybrid patients underwent similar RV remodeling, with relative increase in circumferential to longitudinal contraction soon after stage 1 palliation. The observed RV remodeling in HLHS survivors were minimally impacted by CPB.
Keywords: Adaptation; Cardiac function; Hypoplastic left heart syndrome; Single ventricle.