Trait-associated noncoding variant regions affect TBX3 regulation and cardiac conduction

Elife. 2020 Jul 16:9:e56697. doi: 10.7554/eLife.56697.

Abstract

Genome-wide association studies have implicated common genomic variants in the gene desert upstream of TBX3 in cardiac conduction velocity. Whether these noncoding variants affect expression of TBX3 or neighboring genes and how they affect cardiac conduction is not understood. Here, we use high-throughput STARR-seq to test the entire 1.3 Mb human and mouse TBX3 locus, including two cardiac conduction-associated variant regions, for regulatory function. We identified multiple accessible and functional regulatory DNA elements that harbor variants affecting their activity. Both variant regions drove gene expression in the cardiac conduction tissue in transgenic reporter mice. Genomic deletion from the mouse genome of one of the regions caused increased cardiac expression of only Tbx3, PR interval shortening and increased QRS duration. Combined, our findings address the mechanistic link between trait-associated variants in the gene desert, TBX3 regulation and cardiac conduction.

Keywords: CRISPR/Cas9; E. coli; SNP; atrioventricular conduction system; chromosomes; enhancer; epigenomics; gene expression; genetics; genomics; mouse; transcriptional regulation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arrhythmias, Cardiac / genetics
  • Gene Expression Regulation, Developmental
  • Genome-Wide Association Study
  • Genomics
  • Heart Conduction System / metabolism*
  • Heart Rate
  • Humans
  • Mice
  • Mice, Transgenic
  • Polymorphism, Single Nucleotide
  • T-Box Domain Proteins* / genetics
  • T-Box Domain Proteins* / metabolism

Substances

  • T-Box Domain Proteins
  • TBX3 protein, human
  • Tbx3 protein, mouse

Associated data

  • GEO/GSE125257
  • GEO/GSE121464