Purpose: We investigated the biosafety and implantation feasibility of a new phakic refractive lens (PRL) in rabbit eyes.
Methods: Short PRLs (S-PRLs), large PRLs (L-PRLs), and large-grooved PRLs (LG-PRLs), were prepared by molding medical-grade liquid silicon. The cytotoxicity and cellular adhesion of the PRLs was assessed in vitro. To assess implantation feasibility, the S-PRL, L-PRL, and LG-PRL were implanted in the posterior chamber of rabbit eyes and the relative position was assessed by optical coherence tomography. The intraocular pressures (IOP) were compared between the S-PRL, L-PRL, LG-PRL, and control groups to evaluate the PRL biosafety after implantation.
Results: The in vitro assays showed that cell viability and cellular adhesion in the S-PRL, L-PRL and LG-PRL groups was not significantly different to those in the control group throughout the study. After implantation into the posterior chamber of rabbit eyes, there were no obvious signs of inflammation or increases in IOP at each time point relative to the control group, demonstrating good biosafety of the PRL. The relative positions of the L-PRLs and LG-PRLs in the posterior chamber were appropriate and the retention frequencies were high.
Conclusions: The newly developed LG-PRL showed good biosafety with negligible in vitro cytotoxicity, ocular inflammation, or fluctuations in IOP. The LG-PRL provided the best implantation feasibility. The grooves on the LG-PRL provided channels for aqueous humor circulation. The LG-PRL is a promising type of PRL with an appropriate size and surface structure for effective correction of refractive errors in rabbit eyes.
Keywords: Biosafety; Circulation of aqueous humor; Implantation feasibility; Intraocular pressure; Phakic refractive lens.
© 2022. The Author(s).