Determination of the Pharmacokinetics and Tissue Distribution of Methyl 3,4-Dihydroxybenzoate (MDHB) in Mice Using Liquid Chromatography-Tandem Mass Spectrometry

Eur J Drug Metab Pharmacokinet. 2019 Apr;44(2):237-249. doi: 10.1007/s13318-018-0512-8.

Abstract

Background and objectives: Methyl 3,4-dihydroxybenzoate (MDHB) has the potential to prevent neurodegenerative diseases (NDDs). The present work aims to reveal the pharmacokinetics and tissue distribution characteristics of MDHB.

Methods: The pharmacokinetics and tissue distribution of MDHB were analyzed using LC-MS/MS after a single intragastric administration (50 to 450 mg/kg) in mice, and samples were collected from five animals at specific time points.

Results: Pharmacokinetic parameters of MDHB following intragastric administrations were: the time to peak concentration (Tmax) ranged from 0.033 to 0.07 h, the peak concentration (Cmax) ranged from 12,379.158 to 109798.712 μg/l, the elimination half-life (t1/2z) ranged from 0.153 to 1.291 h, the area under the curve (AUC0-∞) ranged from 640.654 to 20,241.081 μg/l × h, the mean residence time (MRT0-∞) ranged from 0.071 to 0.206 h, the apparent volume of distribution (Vz/F) ranged from 17.538 to 45.244 l/kg, and the systemic clearance (Clz/F) ranged from 22.541 to 80.807 l/h/kg. The oral bioavailability of MDHB was 23%. The maximum MDHB content was detected in the stomach, and the minimum content was observed in the testes; the peak content in the brain was 15,666.93 ng/g.

Conclusions: The pharmacokinetic characteristics of MDHB include fast absorption, high systemic clearance, a short half-life and an oral bioavailability of 23%. Additionally, MDHB permeates the blood-brain barrier (BBB) and is rapidly distributed to all organs. The identification of the pharmacokinetics of MDHB following its oral administration will contribute to further preclinical and clinical studies of its effects.

MeSH terms

  • Animals
  • Chromatography, Liquid / methods
  • Hydroxybenzoates / analysis*
  • Hydroxybenzoates / pharmacokinetics*
  • Male
  • Mice
  • Tandem Mass Spectrometry / methods*
  • Tissue Distribution / drug effects
  • Tissue Distribution / physiology

Substances

  • Hydroxybenzoates
  • methyl 3,4-dihydroxybenzoate