It is well-known that elevated lipoprotein(a)-Lp(a)-levels are associated with a higher risk of cardiovascular (CV) mortality and all-cause mortality, although a standard pharmacotherapeutic approach is still undefined for patients with high CV risk dependent on hyperlipoproteinemia(a). Combined with high Lp(a) levels, familial hypercholesterolemia (FH) leads to a greater CVD risk. In suspected FH patients, the proportion of cases explained by a rise of Lp(a) levels ranges between 5% and 20%. In the absence of a specific pharmacological approach able to lower Lp(a) to the extent required to achieve CV benefits, the most effective strategy today is lipoprotein apheresis (LA). Although limited, a clear effect on Lp(a) is exerted by PCSK9 antagonists, with apparently different mechanisms when given with statins (raised catabolism) or as monotherapy (reduced production). In the era of RNA-based therapies, a new dawn is represented by the use of antisense oligonucleotides APO(a)Lrx, able to reduce Lp(a) from 35% to over 80%, with generally modest injection site reactions. The improved knowledge of Lp(a) atherogenicity and possible prevention will be of benefit for patients with residual CV risk remaining after the most effective available lipid-lowering agents.
Keywords: antisense oligonucleotide APO(a)Lrx; lipoprotein apheresis; lipoprotein(a); niacin; proprotein convertase subtilisin/kexin type 9; statins.