This research presents an intelligent beam-hopping-based grant-free random access (GFRA) architecture designed for secure Internet of Things (IoT) communications in Low Earth Orbit (LEO) satellite networks. In light of the difficulties associated with facilitating extensive device connectivity while ensuring low latency and high reliability, we present a beam-hopping GFRA (BH-GFRA) scheme that enhances access efficiency and reduces resource collisions. Three distinct resource-hopping schemes, random hopping, group hopping, and orthogonal group hopping, are examined and utilized within the framework. This technique utilizes orthogonal resource allocation algorithms to facilitate efficient resource sharing, effectively tackling the irregular and dynamic traffic. Also, a kind of activity mechanism is proposed based on the constraints of the spatio-temporal distribution of devices. We assess the system's performance through a thorough mathematical analysis. Furthermore, we ascertain the access delay and success rate to evaluate its capability to serve a substantial number of IoT devices under satellite-terrestrial delay and interference of massive connections. The suggested method demonstrably improves connection, stability, and access efficiency in 6G IoT satellite networks, meeting the rigorous demands of next-generation IoT applications.
Keywords: Internet of Things (IoT); LEO satellite; beam-hopping; grant-free random access.