Dual topological insulators, simultaneously protected by time-reversal symmetry and crystalline symmetry, open great opportunities to explore different symmetry-protected metallic surface states. However, the conventional dual topological states located on different facets hinder integration into planar opto-electronic/spintronic devices. Here, dual topological superlattices (TSLs) Bi2 Se3 -(Bi2 /Bi2 Se3 )N with limited stacking layer number N are constructed. Angle-resolved photoelectron emission spectra of the TSLs identify the coexistence and adjustment of dual topological surface states on Bi2 Se3 facet. The existence and tunability of spin-polarized dual-topological bands with N on Bi2 Se3 facet result in an unconventionally weak antilocalization effect (WAL) with variable WAL coefficient α (maximum close to 3/2) from quantum transport experiments. Most importantly, it is identified that the spin-polarized surface electrons from dual topological bands exhibit circularly and linearly polarized photogalvanic effect (CPGE and LPGE). It is anticipated that the stacked dual-topology and stacking layer number controlled bands evolution provide a platform for realizing intrinsic CPGE and LPGE. The results show that the surface electronic structure of the dual TSLs is highly tunable and well-regulated for quantum transport and photoexcitation, which shed light on engineering for opto-electronic/spintronic applications.
Keywords: circularly polarized photogalvanic effect; dual topological insulators; linearly polarized photogalvanic effect; quantum transport.
© 2023 Wiley-VCH GmbH.