Most microorganisms resist pure cultivation under conventional laboratory conditions. One of the primary issues for this un-culturability is the absence of biologically produced growth-promoting factors in traditionally defined growth media. However, whether cultivating microbes by providing spent culture supernatant of pivotal microbes in the growth medium can be an effective approach to overcome this limitation is still an under-explored area of research. Here, we used the spent culture medium (SCM) method to isolate previously uncultivated marine bacteria and compared the efficiency of this method with the traditional cultivation (TC) method. In the SCM method, Ca. Bathyarchaeia-enriched supernatant (10%) was used along with recalcitrant organic substrates such as lignin, humic acid, and organic carbon mixture. Ca. Bathyarchaeia, a ubiquitous class of archaea, have the capacity to produce metabolites, making their spent culture supernatant a key source to recover new bacterial stains. Both cultivation methods resulted in the recovery of bacterial species from the phyla Pseudomonadota, Bacteroidota, Actinomycetota, and Bacillota. However, our SCM approach also led to the recovery of species from rarely cultivated groups, such as Planctomycetota, Deinococcota, and Balneolota. In terms of the isolation of new taxa, the SCM method resulted in the cultivation of 80 potential new strains, including one at the family, 16 at the genus, and 63 at the species level, with a novelty ratio of ~ 35% (80/219). In contrast, the TC method allowed the isolation of ~ 10% (19/171) novel strains at species level only. These findings suggest that the SCM approach improved the cultivation of novel and diverse bacteria.
Keywords: Ca. Bathyarchaeia; Deep-ocean sediment; Novel bacteria; Organic carbon mixture; Previously uncultured; Recalcitrant organic substrates; Spent culture medium; Supernatant.
© 2024. The Author(s), under exclusive licence to Microbiological Society of Korea.