D-Glucose-to-L-sorbose isomerization on Lewis acidic zeolite is a highly attractive avenue for sorbose production. But the L-sorbose yield is limited by the competing D-glucose-to-D-fructose isomerization and reaction equilibrium. In this work, it is suggested that ethanol directs the glucose conformation for selective D-glucose-to-L-sorbose isomerization. It also reacts with the produced L-sorbose to form ethyl-sorboside, which allows the D-glucose-to-L-sorbose isomerization to proceed beyond the thermodynamic equilibrium limit. It is shown that a bifunctional zeolite Beta containing framework titanium (Ti) and boron (B) is a selective catalyst for this tandem reaction: Lewis acidic framework Ti catalyzes the D-glucose-to-L-sorbose isomerization via an intramolecular 5,1-hydride shift process as confirmed by isotopic tracing experiments followed by 13C-NMR, while weak Brønsted acid framework B selectively promotes the sorbose ketalization with ethanol. A remarkably high yield of L-sorbose with a high fraction of sugar (>95 %: 27 % unreacted glucose, 11.4 % fructose, 57 % sorbose) was obtained after the mixture produced in ethanol was hydrolyzed.
Keywords: Bifunctional zeolite; Conformation; Glucose isomerization; Selective ketalization; Sorbose.
© 2024 Wiley-VCH GmbH.