Desmoplastic/nodular medulloblastomas (DNMB) and medulloblastomas with extensive nodularity (MBEN) were outlined in the current WHO classification of tumors of the nervous system as two distinct histological MB variants. However, they are often considered as cognate SHH MB entities, and it is a reason why some clinical MB trials do not separate the patients with DNMB or MBEN histology. In the current study, we performed an integrated DNA/RNA-based molecular analysis of 83 DNMB and 36 MBEN to assess the etiopathogenetic relationship between these SHH MB variants. Methylation profiling revealed "infant" and "children" SHH MB clusters but neither DNMB nor MBEN composed separate epigenetic cohorts, and their profiles were intermixed within the "infant" cluster. In contrast, RNA-based transcriptional profiling disclosed that expression signatures of all MBEN were clustered separately from most of DNMB and a set of differentially expressed genes was identified. MBEN transcriptomes were enriched with genes associated with synaptic transmission, neuronal differentiation and metabolism, whereas DNMB profiling signatures included sets of genes involved in phototransduction and NOTCH signaling pathways. Thus, DNMB and MBEN are distinct tumor entities within the SHH MB family whose biology is determined by different transcriptional programs. Therefore, we recommend a transcriptome analysis as an optimal molecular tool to discriminate between DNMB and MBEN, which may be of benefit for patients' risk stratification in clinical trials. Molecular events identified in DNMB by RNA sequencing could be considered in the future as potent molecular targets for novel therapeutic interventions in treatment-resistant cases.
Keywords: DNMB; Gene expression; MBEN; Medulloblastoma.