Osteoporosis is characterized by decreased bone mass and accumulation of adipocytes in the bone marrow. The mechanism underlying the imbalance between osteoblastogenesis and adipogenesis in bone marrow mesenchymal stem cells (BMSCs) remains unclear. We found that ALG5 was significantly downregulated in BMSCs from osteoporotic specimens. ALG5 knockdown inhibited osteogenic differentiation and increased adipogenic differentiation of BMSCs. ALG5 deficiency diminished the N-glycosylation of SLC6A9, thereby altering its protein stability and disrupting SLC6A9-mediated glycine uptake in BMSCs. ALG5 overexpression by adeno-associated virus serotype 9 (rAAV9) alleviated bone loss in OVX mice. Taken together, our findings suggest a novel role for the ALG5-SLC6A9-glycine axis in the imbalance of BMSC differentiation in osteoporosis. Moreover, we identify ALG5 overexpression as a potential therapeutic strategy for treating osteoporosis.
Keywords: ALG5; Bone marrow mesenchymal stem cells; Glycine; Osteoporosis; SLC6A9.
© 2025. The Author(s).