The MYB61-STRONG2 module regulates culm diameter and lodging resistance in rice

J Integr Plant Biol. 2025 Jan 6. doi: 10.1111/jipb.13830. Online ahead of print.

Abstract

Lodging reduces grain yield and quality in cereal crops. Lodging resistance is affected by the strength of the culm, which is influenced by the culm diameter, culm wall thickness, and cell wall composition. To explore the genetic architecture of culm diameter in rice (Oryza sativa), we conducted a genome-wide association study (GWAS). We identified STRONG CULM 2 (STRONG2), which encodes the mannan synthase CSLA5, and showed that plants that overexpressed this gene had increased culm diameter and improved lodging resistance. STRONG2 appears to increase the levels of cell wall components, such as mannose and cellulose, thereby enhancing sclerenchyma development in stems. SNP14931253 in the STRONG2 promoter contributes to variation in STRONG2 expression in natural germplasms and the transcription factor MYB61 directly activates STRONG2 expression. Furthermore, STRONG2 overexpressing plants produced significantly more grains per panicle and heavier grains than the wild-type plants. These results demonstrate that the MYB61-STRONG2 module positively regulates culm diameter and lodging resistance, information that could guide breeding efforts for improved yield in rice.

Keywords: CSLA5; MYB61; STRONG2; cellulose; lodging resistance; mannose.