Rationale: Determining whether, under what circumstances, and to what extent 3,4-methylenedioxymethamphetamine (MDMA) exposure produces chronic changes in human brain function is a critical public health issue. MDMA is a widely used recreational drug commonly sold as "Ecstasy". Because findings from the animal literature have indicated that specific dosage regimens of MDMA can produce long-lasting alterations in serotonergic function, existing studies of MDMA effects in humans have examined brain serotonin (5-HT) transporters (5-HTT) and receptors or have examined brain structures or functions potentially affected by MDMA.
Objectives: The objectives of this review are to provide a background for interpreting human MDMA neuroimaging research, to examine existing neuroimaging data regarding the rationale for and limitations to human MDMA research, and to provide suggestions for improving the design and interpretation of future neuroimaging approaches.
Results: Of the existing neuroimaging studies in human MDMA users, few experimental designs have been replicated across different research groups. Only investigations employing nuclear imaging methods to assay brain 5-HTT levels have been replicated across methods and research laboratories. These studies have found reduced levels of the 5-HTT in recently abstinent MDMA users with some evidence for normalization of 5-HTT levels with prolonged abstinence. However, the sensitivity of these methods is unknown.
Conclusions: The current state of neuroimaging in human MDMA users does not permit conclusions regarding the long-term effects of MDMA exposure. Future study designs might benefit from improved sample homogeneity, increased length of MDMA abstinence, longitudinal study design, test-retest measures, serotonergic specificity, and multimodal approaches.