Aedes aegypti (Diptera: Culicidae) is an urban mosquito involved in the transmission of numerous viruses, including dengue, chikungunya and Zika. In Argentina, Ae. aegypti is the main vector of dengue virus and has been involved in several outbreaks in regions ranging from northern to central Argentina since 2009. In order to evaluate areas of potential vector-borne disease transmission in the city of Córdoba, Argentina, the present study aimed to identify the environmental, socioeconomic and demographic factors driving the distribution of Ae. aegypti larvae through spatial analysis in the form of species distribution models (SDMs). These models elucidate relationships between known occurrences of a species and environmental data in order to identify areas with suitable habitats for that species and the consequent risk for disease transmission. The maximum entropy species distribution model was able to fit the training data well, with an average area under the receiver operating characteristic curve (AUC) of > 0.8, and produced models with fair extrapolation capacity (average test AUC: > 0.75). Human population density, distance to vegetation and water channels were the main variables predictive of the vector suitability of an area. The results of this work will be used to target surveillance and prevention measures, as well as in mosquito management.
Keywords: Aedes aegypti; Argentina; Córdoba; MaxEnt; SDMs; mosquito; prediction; risk; species distribution models.
© 2018 The Royal Entomological Society.