Structure and mechanistic features of the prokaryotic minimal RNase P

Elife. 2021 Jun 28:10:e70160. doi: 10.7554/eLife.70160.

Abstract

Endonucleolytic removal of 5'-leader sequences from tRNA precursor transcripts (pre-tRNAs) by ribonuclease P (RNase P) is essential for protein synthesis. Beyond RNA-based RNase P enzymes, protein-only versions of the enzyme exert this function in various eukarya (there termed PRORPs) and in some bacteria (Aquifex aeolicus and close relatives); both enzyme types belong to distinct subgroups of the PIN domain metallonuclease superfamily. Homologs of Aquifex RNase P (HARPs) are also expressed in some other bacteria and many archaea, where they coexist with RNA-based RNase P and do not represent the main RNase P activity. Here, we solved the structure of the bacterial HARP from Halorhodospira halophila by cryo-electron microscopy, revealing a novel screw-like dodecameric assembly. Biochemical experiments demonstrate that oligomerization is required for RNase P activity of HARPs. We propose that the tRNA substrate binds to an extended spike-helix (SH) domain that protrudes from the screw-like assembly to position the 5'-end in close proximity to the active site of the neighboring dimer. The structure suggests that eukaryotic PRORPs and prokaryotic HARPs recognize the same structural elements of pre-tRNAs (tRNA elbow region and cleavage site). Our analysis thus delivers the structural and mechanistic basis for pre-tRNA processing by the prokaryotic HARP system.

Keywords: E. coli; HARP; aquifex aeolicus rnase p; biochemistry; chemical biology; cryo-EM; mass photometry; molecular biophysics; structural biology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Archaea / genetics
  • Archaea / metabolism
  • Bacteria / genetics
  • Bacteria / metabolism
  • Cryoelectron Microscopy
  • Halorhodospira halophila / genetics*
  • Halorhodospira halophila / metabolism
  • Ribonuclease P / genetics*
  • Ribonuclease P / metabolism

Substances

  • Ribonuclease P