We measured mitosis-promoting factor (MPF) activity in two cell lines, CHO and HeLa, extensively used at mitosis as inducers in the assay of premature chromosome condensation to study the yield and the repair kinetics of radiation damage in interphase chromosomes of diverse cell lines. We found a 2.5-fold higher MPF activity in HeLa as compared to CHO mitotic cells per mg of crude extract protein. HeLa mitotic cells, when used as inducers of premature chromosome condensation, uncovered two times more interphase chromosome breaks in irradiated, nonstimulated human lymphocytes as compared to CHO mitotic cells. A 2-fold increase in the yield of interphase chromosome breaks with HeLa mitotics was also observed in G1 cells from plateau-phase CHO cultures. Thus, MPF activity may be a contributing factor of the process that transforms radiation-induced DNA damage to chromosome breaks, and subsequently to other types of lethal chromosome aberrations. We speculate that the level and the control in the cell cycle of MPF activity may influence the radiosensitivity of cells to killing. The results strongly suggest that a direct comparison between the yields of interphase chromosome breaks measured in different laboratories may not be possible unless similar inducer cells with similar MPF activity are used.