Propionic acidemia (PA) is a classical inborn error of metabolism with high morbidity that results from the inability of the propionyl-CoA carboxylase (PCC) enzyme to convert propionyl-CoA to methylmalonyl-CoA. PA is inherited in an autosomal recessive fashion due to functional loss of both alleles of either PCCA or PCCB. These genes are highly conserved across evolutionarily diverse species and share extensive similarity with pcca-1 and pccb-1 in the nematode, Caenorhabditis elegans. Here, we report the global metabolic effects of deletion in a single PCC gene, either pcca-1 or pccb-1, in C. elegans. Animal lifespan was significantly reduced relative to wild-type worms in both mutant strains, although to a greater degree in pcca-1. Mitochondrial oxidative phosphorylation (OXPHOS) capacity and efficiency as determined by direct polarography of isolated mitochondria were also significantly reduced in both mutant strains. While in vivo quantitation of mitochondrial physiology was normal in pccb-1 mutants, pcca-1 deletion mutants had significantly increased mitochondrial matrix oxidant burden as well as significantly decreased mitochondrial membrane potential and mitochondrial content. Whole worm steady-state free amino acid profiling by UPLC revealed reduced levels in both mutant strains of the glutathione precursor cysteine, possibly suggestive of increased oxidative stress. Intermediary metabolic flux analysis by GC/MS with 1,6-13C2-glucose further showed both PCC deletion strains had decreased accumulation of a distal tricarboxylic acid (TCA) cycle metabolic intermediate (+1 malate), isotopic enrichment in a proximal TCA cycle intermediate (+1 citrate), and increased +1 lactate accumulation. GC/MS analysis further revealed accumulation in the PCC mutants of a small amount of 3-hydroxypropionate, which appeared to be metabolized in C. elegans to oxalate through a unique metabolic pathway. Collectively, these detailed metabolic investigations in translational PA model animals with genetic-based PCC deficiency reveal their significantly dysregulated energy metabolism at multiple levels, including reduced mitochondrial OXPHOS capacity, increased oxidative stress, and inhibition of distal TCA cycle flux, culminating in reduced animal lifespan. These findings demonstrate that the pathophysiology of PA extends well beyond what has classically been understood as a single PCC enzyme deficiency with toxic precursor accumulation, and suggest that therapeutically targeting the globally disrupted energy metabolism may offer novel treatment opportunities for PA.
Summary: Two C. elegans model animals of propionic acidemia with single-gene pcca-1 or pccb-1 deletions have reduced lifespan with significantly reduced mitochondrial energy metabolism and increased oxidative stress, reflecting the disease's broader pathophysiology beyond a single enzyme deficiency with toxic precursor accumulation.
Keywords: C. elegans; Mitochondria; Oxidative phosphorylation; Propionic acidemia; Propionic aciduria; TCA cycle.