Background & aims: Biliary atresia is an inflammatory, fibrosclerosing neonatal cholangiopathy, characterized by a periductal infiltrate composed of CD4(+) and CD8(+) T cells. The pathogenesis of this disease has been proposed to involve a virus-induced, subsequent autoreactive T cell-mediated bile duct injury. Antigen-specific T-cell immunity involves clonal expansion of T cells expressing similar T-cell receptor (TCR) variable regions of the beta-chain (Vbeta). We hypothesized that the T cells in biliary atresia tissue expressed related TCRs, suggesting that the expansion was in direct response to antigenic stimulation.
Methods: The TCR Vbeta repertoire of T cells from the liver, extrahepatic bile duct remnants, and peripheral blood of biliary atresia and other cholestatic disease controls were characterized by fluorescent-activated cell sorter analysis, and TCR junctional region nucleotide sequencing was performed on expanded TCR Vbeta regions to confirm oligoclonality.
Results: FACS analysis revealed Vbeta subset expansions of CD4(+) and CD8(+) T cells from the liver or bile duct remnant in all patients with biliary atresia and only 1 control. The CD4(+) TCR expansions were limited to Vbeta3, -5, -9, and -12 T-cell subsets and the CD8(+) TCR Vbeta expansions were predominantly Vbeta20. Each Vbeta subset expansion was composed of oligoclonal populations of T cells.
Conclusions: Biliary atresia is associated with oligoclonal expansions of CD4(+) and CD8(+) T cells within liver and extrahepatic bile duct remnant tissues, indicating the presence of activated T cells reacting to specific antigenic stimulation. Future studies entail identifying the specific antigen(s) responsible for T-cell activation and bile duct injury.