A Deep Learning-Based Watershed Feature Fusion Approach for Tunnel Crack Segmentation in Complex Backgrounds

Materials (Basel). 2025 Jan 1;18(1):142. doi: 10.3390/ma18010142.

Abstract

As highway tunnel operations continue over time, structural defects, particularly cracks, have been observed to increase annually. Coupled with the rapid expansion of tunnel networks, traditional manual inspection methods have proven inadequate to meet current demands. In recent years, machine vision and deep learning technologies have gained significant attention in civil engineering for the detection and analysis of structural defects. However, rapid and accurate defect identification in highway tunnels presents challenges due to complex background conditions, numerous interfering factors, and the relatively low proportion of cracks within the structure. Additionally, the intensive labor requirements and limited efficiency in labeling training datasets for deep learning pose significant constraints on the deployment of intelligent crack segmentation algorithms. To address these limitations, this study proposes an automatic labeling and optimization algorithm for crack sample sets, utilizing crack features and the watershed algorithm to enable efficient automated segmentation with minimal human input. Furthermore, the deep learning-based crack segmentation network was optimized through comparative analysis of various network depths and residual structure configurations to achieve the best possible model performance. Enhanced accuracy was attained by incorporating axis extraction and watershed filling algorithms to refine segmentation outcomes. Under diverse lining surface conditions and multiple interference factors, the proposed approach achieved a crack segmentation accuracy of 98.78%, with an Intersection over Union (IoU) of 72.41%, providing a robust solution for crack segmentation in tunnels with complex backgrounds.

Keywords: deep learning; image recognition; lining cracks; machine vision; tunnel detection.