Therapeutic monoclonal antibodies (mAbs) have been studied in humans, but the impact on immune memory of mAb treatment during an ongoing infection remains unclear. We evaluated the effect of infusion of the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike receptor-binding domain (RBD) mAb bamlanivimab on memory B cells (MBCs) in SARS-CoV-2-infected individuals. Bamlanivimab treatment skewed the repertoire of MBCs targeting spike toward non-RBD epitopes. Furthermore, the relative affinity of RBD MBCs was weaker in mAb-treated individuals compared to placebo-treated individuals over time. Subsequently, after mRNA coronavirus disease 2019 vaccination, MBC differences persisted and mapped to a specific reduction in recognition of the class II RBD site, the same RBD epitope recognized by bamlanivimab. These findings indicate a substantial role of antibody feedback in regulating MBC responses to infection, and single mAb administration can continue to impact MBC responses to additional antigen exposures months later.
Keywords: COVID-19; SARS-CoV-2; bamlanivimab; mAb therapy; memory B cells.
© The Author(s) 2024. Published by Oxford University Press on behalf of Infectious Diseases Society of America. All rights reserved. For commercial re-use, please contact [email protected] for reprints and translation rights for reprints. All other permissions can be obtained through our RightsLink service via the Permissions link on the article page on our site—for further information please contact [email protected].