The Interaction between Genetic Polymorphisms in FTO and TCF7L2 Genes and Dietary Intake with Regard to Body Mass and Composition: An Exploratory Study

J Pers Med. 2019 Feb 5;9(1):11. doi: 10.3390/jpm9010011.

Abstract

In contrast to the large number of genetic studies on obesity, there has been significantly less nutrigenetics investigation of the interaction between diet and single nucleotide polymorphisms (SNPs) in obesity, especially within Eastern Mediterranean populations. The aim of this study was to evaluate the potential interactions between three candidate SNPs, namely, rs1558902 and rs9939609 in the fat mass and obesity (FTO) gene and the rs7903146 variant of the Transcription factor 7 like 2 (TCF7L2) gene, and macronutrient intake with regard to obesity, body fat, and muscle composition. Three hundred and eight healthy Lebanese adults were included in this study. Data collection included a questionnaire for demographics and lifestyle in addition to a detailed dietary assessment using a culture-specific 80-item semi-quantitative food frequency questionnaire. This was coupled with anthropometric measurements and peripheral blood withdrawal for DNA and genotyping using Taqman allele discrimination assays. The two FTO candidate SNPs were not associated with risk of obesity in this population sample, yet there was a trend, though not a significant one, towards lower muscle mass among carriers of the risk allele of either FTO SNPs. To our knowledge, these results have not been previously reported. As for the TCF7L2 rs7903146 variant, results were congruent with the literature, given that individuals who were homozygous for the risk allele had significantly higher body mass index (BMI) and body fat despite lower intakes of saturated fat. Similar interactions, though not significant, were shown with muscle mass, whereby individuals who were homozygous for the risk allele had lower muscle mass with higher intakes of saturated fat, a result that, to our knowledge, has not been previously reported.

Keywords: FTO; TCF7L2; body mass; body mass composition; nutrigenetics.