A pharmacological activator of AMP-activated protein kinase (AMPK) induces astrocyte stellation

Brain Res. 2007 Sep 7:1168:1-10. doi: 10.1016/j.brainres.2007.06.087. Epub 2007 Jul 27.

Abstract

AMP-activated protein kinase (AMPK) represents a key energy-sensing molecule in many cell types. Because astrocytes are key mediators of metabolic signaling in the brain, we have initiated studies on the expression and activation of AMPK in these cells. Treatment of cultured rat cortical astrocytes with a pharmacological AMPK activator, AICA-riboside (AICAR) resulted in a time- and concentration-dependent increase in phosphorylation of AMPK and acetyl-CoA carboxylase (ACC), a direct substrate. AICAR treatment also induced a transition from epithelioid to stellate morphology in a time- and concentration-dependent manner. As stellation is indicative of actin cytoskeletal reorganization, the formation of stress fibers and focal adhesions in response to AICAR was assessed. AICAR-induced stellation correlated with F-actin disassembly and focal adhesion dispersal. Furthermore, transient transfection of an activated RhoA construct prevented AICAR-induced stellation, indicating a mechanism upstream of RhoA. Use of pharmacological inhibitor compound C prevented AICAR-induced stellation demonstrating necessity of AMPK activity for the response. Our findings suggest that AMPK mediates morphological alterations of astrocytes in response to energy depletion.

MeSH terms

  • AMP-Activated Protein Kinases
  • Acetyl-CoA Carboxylase / metabolism
  • Actins / metabolism
  • Aminoimidazole Carboxamide / analogs & derivatives*
  • Aminoimidazole Carboxamide / pharmacology
  • Analysis of Variance
  • Animals
  • Animals, Newborn
  • Astrocytes / cytology*
  • Astrocytes / drug effects
  • Astrocytes / enzymology*
  • Cell Size* / drug effects
  • Cells, Cultured
  • Cerebral Cortex / cytology
  • Cyclic AMP / pharmacology
  • Dose-Response Relationship, Drug
  • Drug Interactions
  • Enzyme Activation / drug effects
  • Green Fluorescent Proteins / biosynthesis
  • Multienzyme Complexes / metabolism*
  • Phosphorylation / drug effects
  • Protein Serine-Threonine Kinases / metabolism*
  • Rats
  • Ribonucleosides / pharmacology*
  • Time Factors
  • Transfection / methods
  • Xanthines / pharmacology

Substances

  • Actins
  • Multienzyme Complexes
  • Ribonucleosides
  • Xanthines
  • Green Fluorescent Proteins
  • Aminoimidazole Carboxamide
  • acadesine
  • 8-(4-((2-aminoethyl)aminocarbonylmethyloxy)phenyl)-1,3-dipropylxanthine
  • Cyclic AMP
  • Protein Serine-Threonine Kinases
  • AMP-Activated Protein Kinases
  • Acetyl-CoA Carboxylase