Lys11- and Lys48-linked ubiquitin chains interact with p97 during endoplasmic-reticulum-associated degradation

Biochem J. 2014 Apr 1;459(1):205-16. doi: 10.1042/BJ20120662.

Abstract

The ATPase associated with various cellular activities p97 has a critical function in the cytoplasmic degradation of proteins misfolded in the ER (endoplasmic reticulum) through a mechanism known as ERAD (ER-associated degradation). During this process, p97 binds polyubiquitinated ERAD substrates and couples ATP hydrolysis to their dislocation from the ER as a prerequisite to destruction by the proteasome. The ubiquitin signals important for this process are not fully understood. In the present paper we report that p97 interacts with Lys11- and Lys48-linked ubiquitin polymers, but not those containing Lys63 linkages. Disruption of p97 through siRNA-mediated depletion, dominant-negative overexpression or chemical inhibition results in the accumulation of Lys11 and Lys48 ubiquitin chains predominantly at the ER membrane, and is associated with ER stress induction. We show that a catalytically inactive deubiquitinating enzyme and p97 cofactor YOD1 enhances the accumulation of Lys11- and Lys48-linked polyubiquitin in the cytoplasm, at the ER membrane and bound to p97. In addition to general effects on p97-associated ubiquitin polymers, the ERAD substrate CD3δ is modified with both Lys11 and Lys48 ubiquitin chains prior to p97-dependent dislocation. Collectively, the results of the present study are consistent with a major role for p97 in the recognition of Lys11 and Lys48 polyubiquitinated proteins before their degradation by the proteasome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphatases / metabolism*
  • Animals
  • Cell Line
  • Endoplasmic Reticulum / metabolism*
  • HEK293 Cells
  • Humans
  • Insecta
  • Nuclear Proteins / metabolism*
  • Polyubiquitin / metabolism*
  • Protein Binding / physiology

Substances

  • Nuclear Proteins
  • Polyubiquitin
  • Adenosine Triphosphatases
  • p97 ATPase