Flexible micromachined ultrasound transducers (MUTs) for biomedical applications

Microsyst Nanoeng. 2025 Jan 16;11(1):9. doi: 10.1038/s41378-024-00783-5.

Abstract

The use of bulk piezoelectric transducer arrays in medical imaging is a well-established technology that operates based on thickness mode piezoelectric vibration. Meanwhile, advancements in fabrication techniques have led to the emergence of micromachined alternatives, namely, piezoelectric micromachined ultrasound transducer (PMUT) and capacitive micromachined ultrasound transducer (CMUT). These devices operate in flexural mode using piezoelectric thin films and electrostatic forces, respectively. In addition, the development of flexible ultrasound transducers based on these principles has opened up new possibilities for biomedical applications, including biomedical imaging, sensing, and stimulation. This review provides a detailed discussion of the need for flexible micromachined ultrasound transducers (MUTs) and potential applications, their specifications, materials, fabrication, and electronics integration. Specifically, the review covers fabrication approaches and compares the performance specifications of flexible PMUTs and CMUTs, including resonance frequency, sensitivity, flexibility, and other relevant factors. Finally, the review concludes with an outlook on the challenges and opportunities associated with the realization of efficient MUTs with high performance and flexibility.

Publication types

  • Review