Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (6)

Search Parameters:
Keywords = Advanced Land Imager (ALI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 15094 KiB  
Article
Chronology of the 2014–2016 Eruptive Phase of Volcán de Colima and Volume Estimation of Associated Lava Flows and Pyroclastic Flows Based on Optical Multi-Sensors
by Norma Dávila, Lucia Capra, Dolors Ferrés, Juan Carlos Gavilanes-Ruiz and Pablo Flores
Remote Sens. 2019, 11(10), 1167; https://doi.org/10.3390/rs11101167 - 16 May 2019
Cited by 10 | Viewed by 4111
Abstract
The eruption at Volcán de Colima (México) on 10–11 July 2015 represents the most violent eruption that has occurred at this volcano since the 1913 Plinian eruption. The extraordinary runout of the associated pyroclastic flows was never observed during the past dome collapse [...] Read more.
The eruption at Volcán de Colima (México) on 10–11 July 2015 represents the most violent eruption that has occurred at this volcano since the 1913 Plinian eruption. The extraordinary runout of the associated pyroclastic flows was never observed during the past dome collapse events in 1991 or 2004–2005. Based on Satellite Pour l’Observation de la Terre (SPOT) and Earth Observing-1 (EO-1) ALI (Advanced Land Imager), the chronology of the different eruptive phases from September 2014 to September 2016 is reconstructed here. A digital image segmentation procedure allowed for the mapping of the trajectory of the lava flows emplaced on the main cone as well as the pyroclastic flow deposits that inundated the Montegrande ravine on the southern flank of the volcano. Digital surface models (DSMs) obtained from SPOT/6 dual-stereoscopic and tri-stereopair images were used to estimate the volumes of some lava flows and the main pyroclastic flow deposits. We estimated that the total volume of the magma that erupted during the 2014–2016 event was approximately 40 × 107 m3, which is one order of magnitude lower than that of the 1913 Plinian eruption. These data are fundamental for improving hazard assessment because the July 2015 eruption represents a unique scenario that has never before been observed at Volcán de Colima. Volume estimation provides complementary data to better understand eruptive processes, and detailed maps of the distributions of lava flows and pyroclastic flows represent fundamental tools for calibrating numerical modeling for hazard assessment. The stereo capabilities of the SPOT6/7 satellites for the detection of topographic changes and the and the availability of EO-1 ALI imagery are useful tools for reconstructing multitemporal eruptive events, even in areas that are not accessible due to ongoing eruptive activity. Full article
(This article belongs to the Special Issue Remote Sensing of Volcanic Processes and Risk)
Show Figures

Graphical abstract

5740 KiB  
Article
EO-1 Data Quality and Sensor Stability with Changing Orbital Precession at the End of a 16 Year Mission
by Shannon Franks, Christopher S. R. Neigh, Petya K. Campbell, Guoqing Sun, Tian Yao, Qingyuan Zhang, Karl F. Huemmrich, Elizabeth M. Middleton, Stephen G. Ungar and Stuart W. Frye
Remote Sens. 2017, 9(5), 412; https://doi.org/10.3390/rs9050412 - 27 Apr 2017
Cited by 21 | Viewed by 6949
Abstract
The Earth Observing One (EO-1) satellite has completed 16 years of Earth observations in early 2017. What started as a technology mission to test various new advancements turned into a science and application mission that extended many years beyond the satellite’s planned life [...] Read more.
The Earth Observing One (EO-1) satellite has completed 16 years of Earth observations in early 2017. What started as a technology mission to test various new advancements turned into a science and application mission that extended many years beyond the satellite’s planned life expectancy. EO-1’s primary instruments are spectral imagers: Hyperion, the only civilian full spectrum spectrometer (430–2400 nm) in orbit, and the Advanced Land Imager (ALI), the prototype for Landsat-8’s pushbroom imaging technology. Both Hyperion and ALI instruments have continued to perform well, but in February 2011, the satellite ran out of the fuel necessary to maintain orbit, which initiated a change in precession rate that led to increasingly earlier equatorial crossing times during its last five years. The change from EO-1’s original orbit, when it was formation flying with Landsat-7 at a 10:01 a.m. equatorial overpass time, to earlier overpass times results in image acquisitions with increasing solar zenith angles (SZAs). This study takes several approaches to characterize data quality as SZAs increased. The results show that for both EO-1 sensors, atmospherically corrected reflectance products, are within 5 to 10% of mean pre-drift products. No marked trend in decreasing quality in ALI or Hyperion is apparent through 2016, and these data remain a high quality resource through the end of the mission. Full article
Show Figures

Figure 1

20665 KiB  
Article
Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression
by Xingwang Fan, Yuanbo Liu, Jinmei Tao and Yongling Weng
Remote Sens. 2015, 7(1), 488-511; https://doi.org/10.3390/rs70100488 - 6 Jan 2015
Cited by 96 | Viewed by 11474
Abstract
Improper use of land resources may result in severe soil salinization. Timely monitoring and early warning of soil salinity is in urgent need for sustainable development. This paper addresses the possibility and potential of Advanced Land Imager (ALI) for mapping soil salinity. In [...] Read more.
Improper use of land resources may result in severe soil salinization. Timely monitoring and early warning of soil salinity is in urgent need for sustainable development. This paper addresses the possibility and potential of Advanced Land Imager (ALI) for mapping soil salinity. In situ field spectra and soil salinity data were collected in the Yellow River Delta, China. Statistical analysis demonstrated the importance of ALI blue and near infrared (NIR) bands for soil salinity. A partial least square regression (PLSR) model was established between soil salinity and ALI-convolved field spectra. The model estimated soil salinity with a R2 (coefficient of determination), RPD (ratio of prediction to deviation), bias, standard deviation (SD) and root mean square error (RMSE) of 0.749, 3.584, 0.036 g∙kg−1, 0.778 g∙kg−1 and 0.779 g∙kg−1. The model was then applied to atmospherically corrected ALI data. Soil salinity was underestimated for moderately (soil salinity within 2–4 g∙kg−1) and highly saline (soil salinity >4 g∙kg−1) soils. The underestimates increased with the degree of soil salinization, with a maximum value of ~4 g∙kg−1. The major contribution for the underestimation (>80%) may result from data inaccuracy other than model ineffectiveness. Uncertainty analysis confirmed that improper atmospheric correction contributed to a very conservative uncertainty of 1.3 g∙kg−1. Field sampling within remote sensing pixels was probably the major source responsible for the underestimation. Our study demonstrates the effectiveness of PLSR model in retrieving soil salinity from new-generation multi-spectral sensors. This is very valuable for achieving worldwide soil salinity mapping with low cost and considerable accuracy. Full article
(This article belongs to the Special Issue Remote Sensing of Land Degradation in Drylands)
Show Figures

Graphical abstract

3268 KiB  
Article
A Comparison of Land Surface Water Mapping Using the Normalized Difference Water Index from TM, ETM+ and ALI
by Wenbo Li, Zhiqiang Du, Feng Ling, Dongbo Zhou, Hailei Wang, Yuanmiao Gui, Bingyu Sun and Xiaoming Zhang
Remote Sens. 2013, 5(11), 5530-5549; https://doi.org/10.3390/rs5115530 - 28 Oct 2013
Cited by 339 | Viewed by 17154
Abstract
Remote sensing has more advantages than the traditional methods of land surface water (LSW) mapping because it is a low-cost, reliable information source that is capable of making high-frequency and repeatable observations. The normalized difference water indexes (NDWIs), calculated from various band combinations [...] Read more.
Remote sensing has more advantages than the traditional methods of land surface water (LSW) mapping because it is a low-cost, reliable information source that is capable of making high-frequency and repeatable observations. The normalized difference water indexes (NDWIs), calculated from various band combinations (green, near-infrared (NIR), or shortwave-infrared (SWIR)), have been successfully applied to LSW mapping. In fact, new NDWIs will become available when Advanced Land Imager (ALI) data are used as the ALI sensor provides one green band (Band 4), two NIR bands (Bands 6 and 7), and three SWIR bands (Bands 8, 9, and 10). Thus, selecting the optimal band or combination of bands is critical when ALI data are employed to map LSW using NDWI. The purpose of this paper is to find the best performing NDWI model of the ALI data in LSW map. In this study, eleven NDWI models based on ALI, Thematic Mapper (TM), and Enhanced Thematic Mapper Plus (ETM+) data were compared to assess the performance of ALI data in LSW mapping, at three different study sites in the Yangtze River Basin, China. The contrast method, Otsu method, and confusion matrix were calculated to evaluate the accuracies of the LSW maps. The accuracies of LSW maps derived from eleven NDWI models showed that five NDWI models of the ALI sensor have more than an overall accuracy of 91% with a Kappa coefficient of 0.78 of LSW maps at three test sites. In addition, the NDWI model, calculated from the green (Band 4: 0.525–0.605 μm) and SWIR (Band 9: 1.550–1.750 μm) bands of the ALI sensor, namely NDWIA4,9, was shown to have the highest LSW mapping accuracy, more than the other NDWI models. Therefore, the NDWIA4,9 is the best indicator for LSW mapping of the ALI sensor. It can be used for mapping LSW with high accuracy. Full article
Show Figures

827 KiB  
Article
Simulation of EO-1 Hyperion Data from ALI Multispectral Data Based on the Spectral Reconstruction Approach
by Bo Liu, Lifu Zhang, Xia Zhang, Bing Zhang and Qingxi Tong
Sensors 2009, 9(4), 3090-3108; https://doi.org/10.3390/s90403090 - 24 Apr 2009
Cited by 43 | Viewed by 16100
Abstract
Data simulation is widely used in remote sensing to produce imagery for a new sensor in the design stage, for scale issues of some special applications, or for testing of novel algorithms. Hyperspectral data could provide more abundant information than traditional multispectral data [...] Read more.
Data simulation is widely used in remote sensing to produce imagery for a new sensor in the design stage, for scale issues of some special applications, or for testing of novel algorithms. Hyperspectral data could provide more abundant information than traditional multispectral data and thus greatly extend the range of remote sensing applications. Unfortunately, hyperspectral data are much more difficult and expensive to acquire and were not available prior to the development of operational hyperspectral instruments, while large amounts of accumulated multispectral data have been collected around the world over the past several decades. Therefore, it is reasonable to examine means of using these multispectral data to simulate or construct hyperspectral data, especially in situations where hyperspectral data are necessary but hard to acquire. Here, a method based on spectral reconstruction is proposed to simulate hyperspectral data (Hyperion data) from multispectral Advanced Land Imager data (ALI data). This method involves extraction of the inherent information of source data and reassignment to newly simulated data. A total of 106 bands of Hyperion data were simulated from ALI data covering the same area. To evaluate this method, we compare the simulated and original Hyperion data by visual interpretation, statistical comparison, and classification. The results generally showed good performance of this method and indicated that most bands were well simulated, and the information both preserved and presented well. This makes it possible to simulate hyperspectral data from multispectral data for testing the performance of algorithms, extend the use of multispectral data and help the design of a virtual sensor. Full article
(This article belongs to the Special Issue Sensor Algorithms)
Show Figures

1149 KiB  
Article
Comparative Analysis of EO-1 ALI and Hyperion, and Landsat ETM+ Data for Mapping Forest Crown Closure and Leaf Area Index
by Ruiliang Pu, Peng Gong and Qian Yu
Sensors 2008, 8(6), 3744-3766; https://doi.org/10.3390/s8063744 - 6 Jun 2008
Cited by 60 | Viewed by 14802
Abstract
In this study, a comparative analysis of capabilities of three sensors for mapping forest crown closure (CC) and leaf area index (LAI) was conducted. The three sensors are Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat-7 Enhanced Thematic [...] Read more.
In this study, a comparative analysis of capabilities of three sensors for mapping forest crown closure (CC) and leaf area index (LAI) was conducted. The three sensors are Hyperspectral Imager (Hyperion) and Advanced Land Imager (ALI) onboard EO-1 satellite and Landsat-7 Enhanced Thematic Mapper Plus (ETM+). A total of 38 mixed coniferous forest CC and 38 LAI measurements were collected at Blodgett Forest Research Station, University of California at Berkeley, USA. The analysis method consists of (1) extracting spectral vegetation indices (VIs), spectral texture information and maximum noise fractions (MNFs), (2) establishing multivariate prediction models, (3) predicting and mapping pixel-based CC and LAI values, and (4) validating the mapped CC and LAI results with field validated photo-interpreted CC and LAI values. The experimental results indicate that the Hyperion data are the most effective for mapping forest CC and LAI (CC mapped accuracy (MA) = 76.0%, LAI MA = 74.7%), followed by ALI data (CC MA = 74.5%, LAI MA = 70.7%), with ETM+ data results being least effective (CC MA = 71.1%, LAI MA = 63.4%). This analysis demonstrates that the Hyperion sensor outperforms the other two sensors: ALI and ETM+. This is because of its high spectral resolution with rich subtle spectral information, of its short-wave infrared data for constructing optimal VIs that are slightly affected by the atmosphere, and of its more available MNFs than the other two sensors to be selected for establishing prediction models. Compared to ETM+ data, ALI data are better for mapping forest CC and LAI due to ALI data with more bands and higher signal-to-noise ratios than those of ETM+ data. Full article
Show Figures

Back to TopTop