Sign in to use this feature.

Years

Between: -

Search Results (11)

Search Parameters:
Keywords = bedload sampling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3831 KiB  
Article
Sediment Transport Capacity in a Gravel-Bed River with a Sandy Tributary
by Pedro Martin-Moreta, Susana Lopez-Querol and Juan P. Martín-Vide
CivilEng 2023, 4(4), 1214-1232; https://doi.org/10.3390/civileng4040067 - 30 Nov 2023
Viewed by 1538
Abstract
Bedload transport in a river is a deeply analyzed problem, with many methodologies available in the literature. However, most of the existing methods were developed for reaches of rivers rather than for confluences and are suitable for a particular type of material, which [...] Read more.
Bedload transport in a river is a deeply analyzed problem, with many methodologies available in the literature. However, most of the existing methods were developed for reaches of rivers rather than for confluences and are suitable for a particular type of material, which makes them very inaccurate in cases where the sediments are comprised of a mix of different types of soil. This study considers the effect of two different bed sediment sizes, gravel and sand, in relation to bed load transport in a confluence. Five well-known and validated equations (namely Meyer-Peter and Müller, Parker + Engelund and Hansen, Ackers and White, and Yang) are applied to the case study of the Tagus–Alberche rivers confluence (in Talavera de la Reina, Spain), where main and tributary rivers transport different materials (sand and gravel). Field works in the area of the confluence were conducted, and a set of alluvial samples were collected and analyzed. The previously mentioned methods were employed to analyze the geomorphology in the confluence area and downstream of it under different flooding scenarios, concluding different trends in terms of deposition/erosion in the area under historic flooding scenarios. When the trends show erosion, all methods are very consistent in terms of numerical predictions. However, the results present high disparity in the estimated values when the predictions suggest deposition, with Parker + Engelund and Hansen yielding the highest volumes and Meyer-Peter and Müller the lowest (the latter being around 1% of the former). Yang and Ackers and White predict deposits in the same range in all cases (around 15% of Parker and Engelund Hansen). Yang’s formula was found to be suitable for the confluences of rivers with different materials, allowing for the estimation of sediment transport for different grain sizes. The effect of different flow regimes has been analyzed with the application of Yang’s formula to the Tagus-Alberche confluence. Full article
(This article belongs to the Section Water Resources and Coastal Engineering)
Show Figures

Figure 1

15 pages, 25138 KiB  
Article
Estimation of the Spring Tide Bedload Transport at the Eastern Entrance of the Qiongzhou Strait
by Changliang Tong, Maogang Qin, Xuemu Wang and Xiangbai Wu
Water 2023, 15(4), 724; https://doi.org/10.3390/w15040724 - 11 Feb 2023
Viewed by 2031
Abstract
Marine sediment deposits near the Qiongzhou Strait have great potential as sources for beach nourishment and infrastructure industry aggregates. Estimation of bedload transport during the spring tide improves the understanding of the sediment movement characteristic under dynamic conditions, which would further favor the [...] Read more.
Marine sediment deposits near the Qiongzhou Strait have great potential as sources for beach nourishment and infrastructure industry aggregates. Estimation of bedload transport during the spring tide improves the understanding of the sediment movement characteristic under dynamic conditions, which would further favor the assessment and mining of marine sand resources. To study the bedload transport at the eastern entrance of the Qiongzhou Strait, the surficial sediment distributions were obtained through hundreds of sediment samples from field work. A semi-implicit cross-scale hydrological science integrated system model was adopted and validated to simulate the tidal currents in the Qiongzhou Strait. With field observation and simulated data, we estimated the spring tide bedload transport in the study area using the Bagnold Model. The transport rate in the study area was found to have large temporal and spatial variation. The net transport direction during the spring tide cycle was eastward in the southern parts of the strait and westward in the northern strait. Our research has important implications for regional engineering and marine resources management. Full article
Show Figures

Figure 1

23 pages, 8418 KiB  
Article
Bedload Sediment Transport Estimation in Sand-Bed Rivers Comparing Traditional Methods and Surrogate Technologies
by Philipe Ratton, Tobias Bernward Bleninger, Rodrigo Bahia Pereira and Fábio Veríssimo Gonçalves
Appl. Sci. 2023, 13(1), 5; https://doi.org/10.3390/app13010005 - 20 Dec 2022
Cited by 2 | Viewed by 2212
Abstract
Bedload sediment transport in rivers can cause impacts, such as bed erosion/deposition, sandbank formation and changes in flow capacity. Bedload sampling techniques have limitations related to spatial and temporal resolution. These constraints are more relevant in rivers with dunes and high sediment transport. [...] Read more.
Bedload sediment transport in rivers can cause impacts, such as bed erosion/deposition, sandbank formation and changes in flow capacity. Bedload sampling techniques have limitations related to spatial and temporal resolution. These constraints are more relevant in rivers with dunes and high sediment transport. This paper presents a comparison between bedload transport rates estimated with direct and indirect methods in a river with sand dunes. The case study area is a stretch of the Taquari River, in Brazil. Surveys were carried out on three consecutive days, during a flood season. A SonTek M9-ADCP with HydroSurveyor capabilities activated was used to simultaneously measure bathymetry and water velocities throughout a river reach, and also to perform moving-bed tests at six verticals along a predefined cross-section. A mechanical trap (Helley–Smith) was used to collect bedload samples at the same time and positions where the moving-bed tests were performed. Sediment transport was calculated and compared following different approaches: (1) ADCP-BT (Bottom Tracking); (2) modified ISSDOTv2 method (dune tracking); (3) HelleySmith mechanical trap; (4) and five empirical equations. The results showed good agreement between the methodologies, indicating the potential of using ADCPs for hydro sedimentological studies due to the advantages of integrating bathymetry, flow velocity and bedload data. Full article
(This article belongs to the Special Issue Sediment Transport)
Show Figures

Figure 1

16 pages, 3327 KiB  
Article
The Role of Bedload Transport in the Development of a Proglacial River Alluvial Fan (Case Study: Scott River, Southwest Svalbard)
by Waldemar Kociuba
Hydrology 2021, 8(4), 173; https://doi.org/10.3390/hydrology8040173 - 22 Nov 2021
Cited by 4 | Viewed by 2566
Abstract
This study, which was conducted between 2010 and 2013, presents the results of direct, continuous measurements of the bedload transport rate at the mouth section of the Scott River catchment (NW part of Wedel-Jarlsberg Land, Svalbard). In four consecutive melt seasons, the bedload [...] Read more.
This study, which was conducted between 2010 and 2013, presents the results of direct, continuous measurements of the bedload transport rate at the mouth section of the Scott River catchment (NW part of Wedel-Jarlsberg Land, Svalbard). In four consecutive melt seasons, the bedload flux was analyzed at two cross-sections located in the lower reaches of the gravel-bed proglacial river. The transported bedload was measured using two sets of River Bedload Traps (RBTs). Over the course of 130 simultaneous measurement days, a total of 930 bedload samples were collected. During this period, the river discharged about 1.32 t of bedload through cross-section I (XS I), located at the foot of the alluvial fan, and 0.99 t through cross-section II (XS II), located at the river mouth running into the fjord. A comparison of the bedload flux showed a distinctive disproportion between cross-sections. Specifically, the average daily bedload flux QB was 130 kg day−1 (XS I) and 81 kg day−1 (XS II) at the individual cross-profiles. The lower bedload fluxes that were recorded at specified periods in XS II, which closed the catchment at the river mouth from the alluvial cone, indicated an active role of aggradation processes. Approximately 40% of all transported bedload was stored at the alluvial fan, mostly in the active channel zone. However, comparative Geomorphic Change Detection (GCD) analyses of the alluvial fan, which were performed over the period between August 2010 and August 2013, indicated a general lowering of the surface (erosion). It can be assumed that the melt season’s average flows in the active channel zone led to a greater deposition of bedload particles than what was discharged with high intensity during floods (especially the bankfull stage, effectively reshaping the whole surface of the alluvial fan). This study documents that the intensity of bedload flux was determined by the frequency of floods. Notably, the highest daily rates recorded in successive seasons accounted for 12–30% of the total bedload flux. Lastly, the multi-seasonal analysis showed a high spatio-temporal variability of the bedload transport rates, which resulted in changes not only in the channel but also on the entire surface of the alluvial fan morphology during floods. Full article
(This article belongs to the Section Water Resources and Risk Management)
Show Figures

Figure 1

20 pages, 1474 KiB  
Article
SlurryNet: Predicting Critical Velocities and Frictional Pressure Drops in Oilfield Suspension Flows
by Alireza Sarraf Shirazi and Ian Frigaard
Energies 2021, 14(5), 1263; https://doi.org/10.3390/en14051263 - 25 Feb 2021
Cited by 4 | Viewed by 2049
Abstract
Improving the accuracy of the slurry flow predictions in different operating flow regimes remains a major focus for multiphase flow research, and it is especially targeted at industrial applications such as oil and gas. In this paper we develop a robust integrated method [...] Read more.
Improving the accuracy of the slurry flow predictions in different operating flow regimes remains a major focus for multiphase flow research, and it is especially targeted at industrial applications such as oil and gas. In this paper we develop a robust integrated method consisting of an artificial neural network (ANN) and support vector regression (SVR) to estimate the critical velocity, the slurry flow regime change, and ultimately, the frictional pressure drop for a solid–liquid slurry flow in a horizontal pipe, covering wide ranges of flow and geometrical parameters. Three distinct datasets were used to develop machine learning models with totals of 100, 325, and 125 data points for critical velocity, and frictional pressure drops for heterogeneous and bed-load regimes respectively. For each dataset, 80% of the data were used for training and the rest 20% for evaluating the out of sample performance. The K-fold technique was used for cross-validation. The prediction results of the developed integrated method showed that it significantly outperforms the widely used existing correlations and models in the literature. Additionally, the proposed integrated method with the average absolute relative error (AARE) of 0.084 outperformed the model developed without regime classification with the AARE of 0.155. The proposed integrated model not only offers reliable predictions over a wide range of operating conditions and different flow regimes for the first time, but also introduces a general framework of how to utilize prior physical knowledge to achieve more reliable performances from machine learning methods. Full article
(This article belongs to the Special Issue Recent Advances in Petroleum Drilling Engineering)
Show Figures

Figure 1

25 pages, 3478 KiB  
Article
Bedload Velocity and Backscattering Strength from Mobile Sediment Bed: A Laboratory Investigation Comparing Bistatic Versus Monostatic Acoustic Configuration
by Slaven Conevski, Rui Aleixo, Massimo Guerrero and Nils Ruther
Water 2020, 12(12), 3318; https://doi.org/10.3390/w12123318 - 26 Nov 2020
Cited by 4 | Viewed by 1974
Abstract
Despite the many advantages of using active ultrasound sonars, recent studies have shown that the specific acoustic geometry, signal-processing configuration, and complex surface-volume scattering process at the riverbed introduce several uncertainties in bedload estimation. This study presents a comparison of bedload velocity and [...] Read more.
Despite the many advantages of using active ultrasound sonars, recent studies have shown that the specific acoustic geometry, signal-processing configuration, and complex surface-volume scattering process at the riverbed introduce several uncertainties in bedload estimation. This study presents a comparison of bedload velocity and bottom echo intensity measurements performed by monostatic and bistatic active ultrasound systems. The monostatic configuration is widely applied in the field to measure the apparent velocity at the riverbed with an acoustic current Doppler profiler (ADCP). Two laboratory investigations were conducted in two different hydraulic facilities deploying ADCP Stream Pro, monostatic and bistatic acoustic velocity profilers, manufactured by Ubertone. The bistatic instruments provided more accurate bedload velocity measurements and helped in understanding the acoustic sampling of the monastic systems. The bistatic profiles succeeded in measuring a profile over the active bedload layer, and the monostatic instruments resulted in different bedload velocity estimations depending on the acoustic resolution and sampling. The echo intensity increased in the cells measured within the active bedload layer with respect to the cell measuring the water column above. The cells that sampled the immobile bed surface beneath the bedload layer showed a reduction of the echo intensity compared with the cells above. The acoustic sampling, which combines the measurement volume geometry and internal processing, seems crucial for more accurate outputs. Future research about the use of monostatic instruments in the field should aim to define the best possible setting for the acoustic parameters at a given bedload condition that may be tuned by evaluating the backscattering at the river bottom together with the apparent bedload velocity. Full article
(This article belongs to the Special Issue Measurements and Instrumentation in Hydraulic Engineering)
Show Figures

Figure 1

21 pages, 4961 KiB  
Article
Beach Gravels as a Potential Lithostatistical Indicator of Marine Coastal Dynamics: The Pogorzelica–Dziwnów (Western Pomerania, Baltic Sea, Poland) Case Study
by Cyprian Seul, Roman Bednarek, Tomasz Kozłowski and Łukasz Maciąg
Geosciences 2020, 10(9), 367; https://doi.org/10.3390/geosciences10090367 - 16 Sep 2020
Cited by 5 | Viewed by 3002
Abstract
The petrographic composition and grain shape variability of beach gravels in the Pogorzelica–Dziwnów coast section (363.0 to 391.4 km of coastline), southern Baltic Sea, Poland were analyzed herein to characterize the lithodynamics and trends of seashore development. Gravels were sampled at 0.25 km [...] Read more.
The petrographic composition and grain shape variability of beach gravels in the Pogorzelica–Dziwnów coast section (363.0 to 391.4 km of coastline), southern Baltic Sea, Poland were analyzed herein to characterize the lithodynamics and trends of seashore development. Gravels were sampled at 0.25 km intervals, in the midpart of the berm, following an early-autumn wave storm and before beach nourishment. Individual variations in petrographic groups along the shore were investigated. Gravel data were compared and related to coastal morpholithodynamics, seashore infrastructure, and geology of the study area. The contribution of crystalline rock gravels (igneous and metamorphic) was observed to increase along all coast sections, whereas the amount of less resistant components (limestones, sandstones, and shales) usually declined. This effect is explained by the greater wave crushing resistance of igneous and metamorphic components, compared with sedimentary components. Similarly, the gravel grain shape (mainly elongation or flattening) was observed to change, depending on resistance to mechanical destruction, or due to the increased chemical weathering in mainly the limestones, marbles, and sandstones. Observed increase in contribution of discoid and ellipsoid grains is a potential indicator of depositional trends along the coast sections investigated. On the other hand, increased contents of spheroidal and spindle-shaped grains may be related to erosional trends, where intensive redeposition and mechanical reworking of gravels occurs. However, due to the great number of coastal embankments, the petrographic composition and shape parameters of beach gravels do not always clearly indicate the dominant direction of longshore bedload transport. Increased amount of eroded limestone located east of Pogorzelica indicate increased erosion of glacial tills. These sediments are deposited, building the shallow foreshore, with additional redeposition of morainic material towards the shore. Full article
(This article belongs to the Special Issue Shoreline Dynamics and Beach Erosion)
Show Figures

Figure 1

25 pages, 2057 KiB  
Article
Freshwater Mussel Bed Habitat in an Alluvial Sand-Bed-Material-Dominated Large River: A Core Flow Sediment Refugium?
by Alan D. Christian, Andrew J. Peck, Ryan Allen, Raven Lawson, Waylon Edwards, Grace Marable, Sara Seagraves and John L. Harris
Diversity 2020, 12(5), 174; https://doi.org/10.3390/d12050174 - 28 Apr 2020
Cited by 5 | Viewed by 2853
Abstract
Habitat degradation, organismal needs, and other effects influencing freshwater mussel declines have been subject to intense focus by conservationists for the last thirty plus years. While researchers have studied the physical habitat requirements and needs of mussels in small- to medium-sized rivers with [...] Read more.
Habitat degradation, organismal needs, and other effects influencing freshwater mussel declines have been subject to intense focus by conservationists for the last thirty plus years. While researchers have studied the physical habitat requirements and needs of mussels in small- to medium-sized rivers with variable levels of success, less research has been conducted on mussel habitat in larger non-wadeable rivers, especially at the reach scale, where core flow environmental conditions provide and maintain habitat for freshwater mussels. We designed a quasi-experimental observational field study to examine seven hydrologic energy and material variables laterally and longitudinally at Current and Extirpated mussel bed habitat reaches in lower White River, Arkansas, a large non-wadeable, sand-bed-material-dominated river. As expected, lateral and longitudinal hydrologic variable differences were identified within a reach. Mean velocity, bed velocity, the Froude number, and stream power were all significantly lower at Current mussel bed habitat stations within a sampling reach. Energy regime differences in shear stress and, marginally, stream power were higher at Extirpated mussel bed habitat reaches. Several factors emerged as important to mussel habitat in the White River. First, bed velocity warrants further exploration in terms of both flow strength and flow direction. Second, bedload appears to be the primary contributor to mussel habitat but requires additional exploration within the context of core and secondary flow pathway interactions. The combined empirical evidence from our study supports the flow refugium concept identified for mussel habitats in smaller systems but expands the concept to large non-wadeable streams and includes reach-scale refuge from sediment transport conditions. Full article
Show Figures

Figure 1

21 pages, 11140 KiB  
Article
Calculated Potential Bedload Versus Real Transported Sands along the Guadiana River Estuary (Spain–Portugal)
by Juan A. Morales, Claudio Lozano and Mouncef Sedrati
J. Mar. Sci. Eng. 2019, 7(11), 393; https://doi.org/10.3390/jmse7110393 - 5 Nov 2019
Cited by 3 | Viewed by 2352
Abstract
The Guadiana estuary is a coastal system located in the southwest of the Iberian Peninsula and is the natural border between Portugal and Spain. It is a rock-bounded estuary which extends along more than 40 km and is characterized by a semidiurnal mesotidal [...] Read more.
The Guadiana estuary is a coastal system located in the southwest of the Iberian Peninsula and is the natural border between Portugal and Spain. It is a rock-bounded estuary which extends along more than 40 km and is characterized by a semidiurnal mesotidal regime. This paper represents an approach to the bedload transport across two flow sections located in the fluvial and marine domains. In the fluvial profile, the most frequent bedform is the plane bed. In the marine area the bed of the deep channel is composed of well-sorted sand, while a lateral bar displays partially cohesive sediments with dominant fine sands in a matrix of clayey silts. Data were acquired during spring and neap tides. Near-bottom water velocities were registered by an acoustic Doppler current profiler (ADCP). Density and bed rugosity were determined in sediment samples. These data were employed using Bagnold’s equation (1963) to quantify the potential bedload (Qb). Further, real bedload values (Sb) were obtained by using Poliakoff traps. The comparison of the results of Qb under both ebb and flood conditions demonstrated a clear river-to-sea net transport in both sectors. The values of Sb were lower than those of Qb in every condition. The sand input across the fluvial estuary cannot supply the potential bedload in the lower domain of the channel, thereby causing a deficit that explains this lack of agreement between potential and real transport. Full article
(This article belongs to the Special Issue Coastal Morphodynamics II)
Show Figures

Figure 1

22 pages, 3572 KiB  
Article
Estimating the Sediment Flux and Budget for a Data Limited Rift Valley Lake in Ethiopia
by Alemu O. Aga, Assefa M. Melesse and Bayou Chane
Hydrology 2019, 6(1), 1; https://doi.org/10.3390/hydrology6010001 - 23 Dec 2018
Cited by 37 | Viewed by 6858 | Correction
Abstract
Information on sediment concentration in rivers is important for the design and management of reservoirs. In this paper, river sediment flux and siltation rate of a rift valley lake basin (Lake Ziway, Ethiopia) was modeled using suspended sediment concentration (SSC) samples from four [...] Read more.
Information on sediment concentration in rivers is important for the design and management of reservoirs. In this paper, river sediment flux and siltation rate of a rift valley lake basin (Lake Ziway, Ethiopia) was modeled using suspended sediment concentration (SSC) samples from four rivers and lake outlet stations. Both linear and non-linear least squares log–log regression methods were used to develop the model. The best-fit model was tested and evaluated qualitatively by time-series plots, quantitatively by using watershed model evaluation statistics, and validated by calculating the prediction error. Sediment yield (SY) of ungauged rivers were assessed by developing and using a model that includes catchment area, slope, and rainfall, whereas bedload was estimated. As a result, the gross annual SY transported into the lake was 2.081 Mton/year. Annually, 0.178 Mton/year of sediment is deposited in floodplains with a sediment trapping rate of 20.6%, and 41,340 ton/year of sediment leaves the lake through the Bulbula River. The annual sediment deposition in the lake is 2.039 Mton/year with a mean sediment trapping efficiency of 98%. Based on the established sediment budget with average rainfall, the lake will lose its volume by 0.106% annually and the lifetime of Lake Ziway will be 947 years. The results show that the approach used can be replicated at other similar ungauged watersheds. As one of the most important sources of water for irrigation in the country, the results can be used for planning and implementing a lake basin management program targeting upstream soil erosion control. Full article
Show Figures

Figure 1

3387 KiB  
Article
Assessing the Performance of In-Stream Restoration Projects Using Radio Frequency Identification (RFID) Transponders
by Bruce MacVicar, Margot Chapuis, Emma Buckrell and André Roy
Water 2015, 7(10), 5566-5591; https://doi.org/10.3390/w7105566 - 15 Oct 2015
Cited by 30 | Viewed by 6620
Abstract
Instream channel restoration is a common practice in river engineering that presents a challenge for research. One research gap is the development of monitoring techniques that allow for testable predictions of sediment transport and supply. Here we use Radio Frequency Identification (RFID) transponders [...] Read more.
Instream channel restoration is a common practice in river engineering that presents a challenge for research. One research gap is the development of monitoring techniques that allow for testable predictions of sediment transport and supply. Here we use Radio Frequency Identification (RFID) transponders to compare the short-term (1-year) sediment transport response to flood events in a restored and a control reach. The field site is Wilket Creek, an enlarged creek in a fully urbanized catchment without stormwater management control in Toronto, Ontario. The responses to three flooding periods, each of which are at or above the design bankfull discharge, are described. Key results are that (i) particle mobility is lower in the restored reach for all three periods; (ii) full mobility occurs in the control reach during the first two floods while partial mobility occurs in the restored reach; and (iii) the constructed morphology exerted a controlling influence on particle entrainment, with higher mobility in the pools. Log-transformed travel distances exhibit normal distributions when grouped by particle size class, which allows a statistical comparison with power law and other predictive travel-distance relations. Results show that three bedload transport conditions can occur, with partial mobility associated with a mild relation between particle size and travel distance and full mobility associated with either a flat or steep relation depending on the degree of integration of particles in the bed. Recommendations on seeding strategy and sample sizes are made to improve the precision of the results by minimizing confidence intervals for mobility and travel distances. Even in a short term study, the RFID sediment tracking technique allows a process-based assessment of stream restoration outcomes that can be used to justify the instream intervention and plan future attempts to stabilize and enhance the system. Full article
(This article belongs to the Special Issue Recent Advances in Riverflow Research)
Show Figures

Figure 1

Back to TopTop