Sign in to use this feature.

Years

Between: -

Search Results (10,943)

Search Parameters:
Keywords = infiltration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3133 KiB  
Article
Utilizing Adenovirus Knob Proteins as Carriers in Cancer Gene Therapy Amidst the Presence of Anti-Knob Antibodies
by Naoya Koizumi, Takamasa Hirai, Junpei Kano, Anna Sato, Yurika Suzuki, Arisa Sasaki, Tetsuya Nomura and Naoki Utoguchi
Int. J. Mol. Sci. 2024, 25(19), 10679; https://doi.org/10.3390/ijms251910679 - 3 Oct 2024
Abstract
Numerous gene therapy drugs for cancer have received global approval, yet their efficacy against solid tumors remains inadequate. Our previous research indicated that the fiber protein, a component of the adenovirus capsid, can propagate from infected cells to neighboring cells that express the [...] Read more.
Numerous gene therapy drugs for cancer have received global approval, yet their efficacy against solid tumors remains inadequate. Our previous research indicated that the fiber protein, a component of the adenovirus capsid, can propagate from infected cells to neighboring cells that express the adenovirus receptor. We hypothesize that merging this fiber protein with an anti-cancer protein could enable the anti-cancer protein to disseminate around the transfected cells, presenting a novel approach to cancer gene therapy. In our study, we discovered that the knob region of the adenovirus type 5 fiber protein is the smallest unit capable of spreading to adjacent cells in a receptor-specific manner. We also showed that the recombinant knob protein infiltrates cells after dispersing to surrounding cells. To assess the potential of the knob protein to augment gene therapy for solid tumors in mice, we expressed a fusion gene of the A subunit of cytotoxic cholera toxin and the knob region in mouse tumors. We found that this fusion protein only inhibited tumor growth in receptor-expressing mouse melanomas, and this inhibitory effect persisted even in mice with anti-knob antibodies. Our study’s findings propose a novel cancer gene therapy strategy that enhances therapeutic effects by specifically delivering therapeutic proteins, expressed from in vivo administered genes, to target molecules. This outcome offers a fresh perspective on gene therapy for solid cancers, and we anticipate that knob proteins will serve as a platform for this method. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

26 pages, 5688 KiB  
Article
Cordyceps militaris Grown on Germinated Rhynchosia nulubilis (GRC) Encapsulated in Chitosan Nanoparticle (GCN) Suppresses Particulate Matter (PM)-Induced Lung Inflammation in Mice
by Byung-Jin Park, Kyu-Ree Dhong and Hye-Jin Park
Int. J. Mol. Sci. 2024, 25(19), 10642; https://doi.org/10.3390/ijms251910642 - 3 Oct 2024
Viewed by 142
Abstract
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: [...] Read more.
Cordyceps militaris grown on germinated Rhynchosia nulubilis (GRC) exerts various biological effects, including anti-allergic, anti-inflammatory, and immune-regulatory effects. In this study, we investigated the anti-inflammatory effects of GRC encapsulated in chitosan nanoparticles (CN) against particulate matter (PM)-induced lung inflammation. Optimal CN (CN6) (CHI: TPP w/w ratio of 4:1; TPP pH 2) exhibited a zeta potential of +22.77 mV, suitable for GRC encapsulation. At different GRC concentrations, higher levels (60 and 120 mg/mL) led to increased negative zeta potential, enhancing stability. The optimal GRC concentration for maximum entrapment (31.4 ± 1.35%) and loading efficiency (7.6 ± 0.33%) of GRC encapsulated in CN (GCN) was 8 mg/mL with a diameter of 146.1 ± 54 nm and zeta potential of +30.68. In vivo studies revealed that administering 300 mg/kg of GCN significantly decreased the infiltration of macrophages and T cells in the lung tissues of PM-treated mice, as shown by immunohistochemical analysis of CD4 and F4/80 markers. Additionally, GCN ameliorated PM-induced lung tissue damage, inflammatory cell infiltration, and alveolar septal hypertrophy. GCN also decreased total cells and neutrophils, showing notable anti-inflammatory effects in the bronchoalveolar lavage fluid (BALF) from PM-exposed mice, compared to GRC. Next the anti-inflammatory properties of GCN were further explored in PM- and LPS-exposed RAW264.7 cells; it significantly reduced PM- and LPS-induced cell death, NO production, and levels of inflammatory cytokine mRNAs (IL-1β, IL-6, and COX-2). GCN also suppressed NF-κB/MAPK signaling pathways by reducing levels of p-NF-κB, p-ERK, and p-c-Jun proteins, indicating its potential in managing PM-related inflammatory lung disease. Furthermore, GCN significantly reduced PM- and LPS-induced ROS production. The enhanced bioavailability of GRC components was demonstrated by an increase in fluorescence intensity in the intestinal absorption study using FITC-GCN. Our data indicated that GCN exhibited enhanced bioavailability and potent anti-inflammatory and antioxidant effects in cells and in vivo, making it a promising candidate for mitigating PM-induced lung inflammation and oxidative stress. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

18 pages, 5691 KiB  
Article
Evidence of Neutrophils and Neutrophil Extracellular Traps in Human NMSC with Regard to Clinical Risk Factors, Ulceration and CD8+ T Cell Infiltrate
by Linda-Maria Hildegard Moeller, Carsten Weishaupt and Fiona Schedel
Int. J. Mol. Sci. 2024, 25(19), 10620; https://doi.org/10.3390/ijms251910620 - 2 Oct 2024
Viewed by 202
Abstract
Non-melanoma skin cancers (NMSC), including basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and Merkel cell carcinoma (MCC), are increasingly common and present significant healthcare challenges. Neutrophil extracellular traps (NETs), chromatin fibers expulsed by neutrophil granulocytes, can promote immunotherapy resistance via an [...] Read more.
Non-melanoma skin cancers (NMSC), including basal cell carcinoma (BCC), cutaneous squamous cell carcinoma (cSCC), and Merkel cell carcinoma (MCC), are increasingly common and present significant healthcare challenges. Neutrophil extracellular traps (NETs), chromatin fibers expulsed by neutrophil granulocytes, can promote immunotherapy resistance via an impairment of CD8+ T cell-mediated cytotoxicity. Here, to identify a potential therapeutic target, we investigate the expulsion of NETs and their relation to CD8+ T cell infiltration in NMSC. Immunofluorescence staining for neutrophils (CD15) and NETs (H3cit), as well as immunohistochemistry for cytotoxic T cells (CD8+) on human cSCCs (n = 24), BCCs (n = 17) and MCCs (n = 12), revealed a correlation between neutrophil infiltration and ulceration diameter in BCC and MCC, but not in cSCC. In BCC and cSCC, neutrophil infiltration also correlated with the cross-sectional area (CSA). NETs were not associated with established risk factors but with the presence of an ulceration, and, in cSCC, with abscess-like structures. CD8+ T cell infiltration was not reduced in tumors that were NET-positive nor in those with a denser neutrophil infiltration. This study is the first to report and characterize NETs in NMSC. Thus, it gives an incentive for further research in this relevant yet understudied topic. Full article
Show Figures

Figure 1

24 pages, 1915 KiB  
Article
Subacute Toxicity and Pharmacokinetic Evaluation of the Synthetic Cannabinoid 4F-MDMB-BUTINACA in Rats: A Forensic and Toxicological Perspective
by Elkhatim Hassan Abdelgadir, Jihad Al-Qudsi, Elham S. Abu-Nukhaa and Dimah A. Alsidrani
Future Pharmacol. 2024, 4(4), 676-699; https://doi.org/10.3390/futurepharmacol4040036 - 1 Oct 2024
Viewed by 130
Abstract
Background: 4-MDMB-BUTINACA, a next-generation synthetic cannabinoid, presents significant public health and forensic challenges due to its evolving nature and potential toxicity. Methods: This study evaluates the subacute toxic effects and pharmacokinetics of 4−Fluoro MDMB−BUTINACA (4F-MDMB-BUTINACA) in adult male albino rats, administered orally for [...] Read more.
Background: 4-MDMB-BUTINACA, a next-generation synthetic cannabinoid, presents significant public health and forensic challenges due to its evolving nature and potential toxicity. Methods: This study evaluates the subacute toxic effects and pharmacokinetics of 4−Fluoro MDMB−BUTINACA (4F-MDMB-BUTINACA) in adult male albino rats, administered orally for seven days at doses of 1 mg/kg, 5 mg/kg, and 15 mg/kg. The hematological, biochemical, and histopathological parameters were assessed and compared to controls. Results: The pharmacokinetics were determined using GC–MS/MS with a positive chemical ionization and granisetron as an internal standard. A histological analysis revealed inflammatory cell aggregation, congestion, hemorrhage, edema, and fibrosis in various tissues, with renal examinations showing tubule degradation, glomerular atrophy, Bowman’s space expansion, edema, and hemorrhage. The liver exhibited cellular infiltration, while cardiac muscle fibers showed myocardial fiber degradation and inflammatory cell aggregation. Biochemical assays indicated significant alterations (p < 0.05) in the serum levels of AST, ALT, ALP, GGT, total protein, albumin, triglycerides, urea, MCHC, MCV, RDW, platelets, neutrophils, eosinophils, and basophils compared to the controls. Conclusions: The validated bioanalytical method revealed rapid absorption of 4F-MDMB-BUTINACA, with a plasma half-life of 2.371 h, a volume of distribution of 2272.85 L, and a plasma clearance rate of 664.241 L/h. In conclusion, 4F-MDMB-BUTINACA is a highly toxic synthetic cannabinoid, particularly affecting the liver, kidneys, and heart. Full article
15 pages, 704 KiB  
Review
The Role of Cardio-Renal Inflammation in Deciding the Fate of the Arteriovenous Fistula in Haemodialysis Therapy
by Jamie Kane, Alaura Lemieux, Gaurav Baranwal and Sanjay Misra
Cells 2024, 13(19), 1637; https://doi.org/10.3390/cells13191637 - 1 Oct 2024
Viewed by 282
Abstract
Vascular access is an indispensable component of haemodialysis therapy for end-stage kidney disease patients. The arteriovenous fistula (AVF) is most common, but importantly, two-year failure rates are greater than fifty percent. AVF failure can occur due to a lack of suitable vascular remodelling, [...] Read more.
Vascular access is an indispensable component of haemodialysis therapy for end-stage kidney disease patients. The arteriovenous fistula (AVF) is most common, but importantly, two-year failure rates are greater than fifty percent. AVF failure can occur due to a lack of suitable vascular remodelling, and inappropriate inflammation preventing maturation, or alternatively neointimal hyperplasia and vascular stenosis preventing long-term use. A comprehensive mechanistic understanding of these processes is still lacking, but recent studies highlight an essential role for inflammation from uraemia and the AVF itself. Inflammation affects each cell in the cascade of AVF failure, the endothelium, the infiltrating immune cells, and the vascular smooth muscle cells. This review examines the role of inflammation in each cell step by step and the influence on AVF failure. Inflammation resulting in AVF failure occurs initially via changes in endothelial cell activation, permeability, and vasoprotective chemokine secretion. Resultingly, immune cells can extravasate into the subendothelial space to release inflammatory cytokines and cause other deleterious changes to the microenvironment. Finally, all these changes modify vascular smooth muscle cell function, resulting in excessive and unchecked hyperplasia and proliferation, eventually leading to stenosis and the failure of the AVF. Finally, the emerging therapeutic options based off these findings are discussed, including mesenchymal stem cells, small-molecule inhibitors, and far-infrared therapies. Recent years have clearly demonstrated a vital role for inflammation in deciding the fate of the AVF, and future works must be centred on this to develop therapies for a hitherto unacceptably underserved patient population. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
20 pages, 1843 KiB  
Review
Review to Elucidate the Correlation between Cuproptosis-Related Genes and Immune Infiltration for Enhancing the Detection and Treatment of Cervical Cancer
by Pratibha Pandey, Seema Ramniwas, Shivam Pandey, Sorabh Lakhanpal, G. Padmapriya, Shivang Mishra, Mandeep Kaur, Ayash Ashraf, M Ravi Kumar and Fahad Khan
Int. J. Mol. Sci. 2024, 25(19), 10604; https://doi.org/10.3390/ijms251910604 - 1 Oct 2024
Viewed by 255
Abstract
Copper is a vital trace element in oxidized and reduced forms. It plays crucial roles in numerous biological events such as redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy, and immune modulation. Maintaining the balance of copper in the body is essential [...] Read more.
Copper is a vital trace element in oxidized and reduced forms. It plays crucial roles in numerous biological events such as redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy, and immune modulation. Maintaining the balance of copper in the body is essential because its deficiency and excess can be harmful. Abnormal copper metabolism has a two-fold impact on the development of tumors and cancer treatment. Cuproptosis is a form of cell death that occurs when there is excessive copper in the body, leading to proteotoxic stress and the activation of a specific pathway in the mitochondria. Research has been conducted on the advantageous role of copper ionophores and chelators in cancer management. This review presents recent progress in understanding copper metabolism, cuproptosis, and the molecular mechanisms involved in using copper for targeted therapy in cervical cancer. Integrating trace metals and minerals into nanoparticulate systems is a promising approach for controlling invasive tumors. Therefore, we have also included a concise overview of copper nanoformulations targeting cervical cancer cells. This review offers comprehensive insights into the correlation between cuproptosis-related genes and immune infiltration, as well as the prognosis of cervical cancer. These findings can be valuable for developing advanced clinical tools to enhance the detection and treatment of cervical cancer. Full article
(This article belongs to the Section Molecular Immunology)
19 pages, 11038 KiB  
Article
YKL40/Integrin β4 Axis Induced by the Interaction between Cancer Cells and Tumor-Associated Macrophages Is Involved in the Progression of High-Grade Serous Ovarian Carcinoma
by Keitaro Yamanaka, Yu-ichiro Koma, Satoshi Urakami, Ryosuke Takahashi, Satoshi Nagamata, Masaki Omori, Rikuya Torigoe, Hiroki Yokoo, Takashi Nakanishi, Nobuaki Ishihara, Shuichi Tsukamoto, Takayuki Kodama, Mari Nishio, Manabu Shigeoka, Hiroshi Yokozaki and Yoshito Terai
Int. J. Mol. Sci. 2024, 25(19), 10598; https://doi.org/10.3390/ijms251910598 - 1 Oct 2024
Viewed by 329
Abstract
Macrophages in the tumor microenvironment, termed tumor-associated macrophages (TAMs), promote the progression of various cancer types. However, many mechanisms related to tumor–stromal interactions in epithelial ovarian cancer (EOC) progression remain unclear. High-grade serous ovarian carcinoma (HGSOC) is the most malignant EOC subtype. Herein, [...] Read more.
Macrophages in the tumor microenvironment, termed tumor-associated macrophages (TAMs), promote the progression of various cancer types. However, many mechanisms related to tumor–stromal interactions in epithelial ovarian cancer (EOC) progression remain unclear. High-grade serous ovarian carcinoma (HGSOC) is the most malignant EOC subtype. Herein, immunohistochemistry was performed on 65 HGSOC tissue samples, revealing that patients with a higher infiltration of CD68+, CD163+, and CD204+ macrophages had a poorer prognosis. We subsequently established an indirect co-culture system between macrophages and EOC cells, including HGSOC cells. The co-cultured macrophages showed increased expression of the TAM markers CD163 and CD204, and the co-cultured EOC cells exhibited enhanced proliferation, migration, and invasion. Cytokine array analysis revealed higher YKL40 secretion in the indirect co-culture system. The addition of YKL40 increased proliferation, migration, and invasion via extracellular signal-regulated kinase (Erk) signaling in EOC cells. The knockdown of integrin β4, one of the YKL40 receptors, suppressed YKL40-induced proliferation, migration, and invasion, as well as Erk phosphorylation in some EOC cells. Database analysis showed that high-level expression of YKL40 and integrin β4 correlated with a poor prognosis in patients with serous ovarian carcinoma. Therefore, the YKL40/integrin β4 axis may play a role in ovarian cancer progression. Full article
Show Figures

Figure 1

11 pages, 1843 KiB  
Article
The Effect of Erosive Media on the Mechanical Properties of CAD/CAM Composite Materials
by Marwa M. Alnsour, Rasha A. Alamoush, Nikolaos Silikas and Julian D. Satterthwaite
J. Funct. Biomater. 2024, 15(10), 292; https://doi.org/10.3390/jfb15100292 - 1 Oct 2024
Viewed by 318
Abstract
This study aimed to investigate the effect of acidic media storage (gastric acid and Coca-Cola) on the mechanical properties of CAD/CAM materials. Three types of materials were tested: a polymer-infiltrated ceramic network (PICN) (Vita Enamic (En), VITA Zahnfabrik, Germany), a resin composite block [...] Read more.
This study aimed to investigate the effect of acidic media storage (gastric acid and Coca-Cola) on the mechanical properties of CAD/CAM materials. Three types of materials were tested: a polymer-infiltrated ceramic network (PICN) (Vita Enamic (En), VITA Zahnfabrik, Germany), a resin composite block (RCB) (Cerasmart (Cs), GC Corp, Japan), and a conventional resin-based composite (Gradia direct (Gr), GC Corp, Japan), which was used as a control. Beam-shaped specimens of each material, with dimensions of 16 mm × 4 mm × 1.5 mm, were prepared (90 in total). The specimens were divided into subgroups (10 each) and stored for 96 h in either gastric acid, Coca-Cola, or distilled water. Flexural strength and elastic modulus were evaluated using a three-point flexural strength test with acoustic emission (AE) monitoring. Vickers microhardness was measured before and after storage in gastric acid and Coca-Cola. Data were statistically analysed using two-way and one-way ANOVA, the Tukey’s post hoc, and independent t-test at a significance level of 0.05. The results showed that Cs and En maintained their flexural strength and elastic modulus after acidic media exposure, while Gr experienced a significant decrease in flexural strength following gastric acid storage (p < 0.01). Initial crack detection was not possible using the AE system, impacting the determination of flexural strength. Exposure to acidic media decreased all materials’ microhardness, with Gr showing the most notable reduction (p < 0.0001). Gastric acid had a greater impact on the microhardness of all tested materials compared to Coca-Cola (p < 0.0001). In conclusion, storage in erosive media did not notably affect the flexural strength or elastic modulus of CAD/CAM composites but it did affect hardness. CAD/CAM composite blocks demonstrated superior mechanical properties compared to the conventional composite. Full article
(This article belongs to the Special Issue Latest Advances in Dental Materials)
Show Figures

Figure 1

11 pages, 2202 KiB  
Case Report
Long-Term Survival in Canine Hepatosplenic T-Cell Lymphoma Treated with Toceranib Phosphate Following Splenectomy: A Case of Atypical Lymphoma
by Makoto Akiyoshi, Masaharu Hisasue, Midori Goto Asakawa and Sakurako Neo
Vet. Sci. 2024, 11(10), 458; https://doi.org/10.3390/vetsci11100458 - 1 Oct 2024
Viewed by 306
Abstract
Toceranib phosphate (toceranib) is approved for canine mast cell tumor treatment. However, no long-term response to toceranib in canine HSTCL has been reported. Here, we describe a case of a 10-year-old castrated mixed-breed dog that presented with a 3-month history of weight loss, [...] Read more.
Toceranib phosphate (toceranib) is approved for canine mast cell tumor treatment. However, no long-term response to toceranib in canine HSTCL has been reported. Here, we describe a case of a 10-year-old castrated mixed-breed dog that presented with a 3-month history of weight loss, polydipsia, and polyuria. The clinicopathological and imaging abnormalities included icterus, biliary obstruction, and splenomegaly with multiple diffuse splenic hypoechoic nodules. On day 21, a cholecystectomy was performed to remove the obstruction, followed by a liver biopsy and splenectomy. Cytology of the spleen and liver showed many small lymphocytes with intracytoplasmic granules (sGLs). Splenic and hepatic infiltration of neoplastic CD3/granzyme B-positive small cells and lymphocytic cholecystitis with granzyme B-negative small cells were noted. T-cell receptor gene clonal rearrangements were observed in the liver tissues. The dog was diagnosed with a hepatosplenic T-cell lymphoma (HSTCL) of sGLs concurrent with lymphocytic cholecystitis. The icterus resolved after surgery, but there was progressive elevation of liver enzyme levels. Toceranib was administered from day 39, resulting in decreased liver enzyme levels, and the dog remained in good condition. The dog stayed in remission after toceranib administration and survived for 460 days. Toceranib should be considered an effective treatment option for canine HSTCL. Full article
(This article belongs to the Special Issue Histopathology and Therapy in Small Animals Oncology)
Show Figures

Figure 1

6 pages, 640 KiB  
Clinicopathological Challenge
A Rapidly Growing Nodule on the Eyebrow of a Pediatric Patient
by Italo Francesco Aromolo, Michela Brena, Nicola Adriano Monzani, Fabio Caviggioli, Emilio Berti, Donata Micello and Riccardo Cavalli
Dermatopathology 2024, 11(4), 266-271; https://doi.org/10.3390/dermatopathology11040028 - 30 Sep 2024
Viewed by 259
Abstract
Abstract: A 11-year-old Caucasian girl presented to our Dermatology Unit with a 2-month history of an erythematous nodule, localized to the medial portion of her left eyebrow, rapidly growing in the two weeks before presentation. The histopathological examination revealed a dermal multi-nodular [...] Read more.
Abstract: A 11-year-old Caucasian girl presented to our Dermatology Unit with a 2-month history of an erythematous nodule, localized to the medial portion of her left eyebrow, rapidly growing in the two weeks before presentation. The histopathological examination revealed a dermal multi-nodular epithelial neoplasm composed of clear cells, squamous cells, and glandular cells, characterized by cytologic atypia, high mitotic activity, and an infiltrative deep growth pattern. The immunohistochemical profile of the lesion was as follows: CKAE1/AE3+, EMA+, CK8/18+, CK7+, CK19+, AR negative, p63 focally +, Ki67 25%, rare cells GCDFP15+, p53+. Full article
20 pages, 1821 KiB  
Review
Chemistry and Physics of Wet Foam Stability for Porous Ceramics: A Review
by Kamrun Nahar Fatema, Md Rokon Ud Dowla Biswas, Jung Gyu Park and Ik Jin Kim
Micro 2024, 4(4), 552-571; https://doi.org/10.3390/micro4040034 - 30 Sep 2024
Viewed by 333
Abstract
The unique structural properties of porous ceramics, such as low thermal conductivity, high surface area, controlled permeability, and low density, make this material valuable for a wide range of applications. Its uses include insulation, catalyst carriers, filters, bio-scaffolds for tissue engineering, and composite [...] Read more.
The unique structural properties of porous ceramics, such as low thermal conductivity, high surface area, controlled permeability, and low density, make this material valuable for a wide range of applications. Its uses include insulation, catalyst carriers, filters, bio-scaffolds for tissue engineering, and composite manufacturing. However, existing processing methods for porous ceramics, namely replica techniques and sacrificial templates, are complex, release harmful gases, have limited microstructure control, and are expensive. In contrast, the direct foaming method offers a simple and cost-effective approach. By modifying the surface chemistry of ceramic particles in a colloidal suspension, the hydrophilic particles are transformed into hydrophobic ones using surfactants. This method produces porous ceramics with interconnected pores, creating a hierarchical structure that is suitable for applications like nano-filters. This review emphasizes the importance of interconnected porosity in developing advanced ceramic materials with tailored properties for various applications. Interconnected pores play a vital role in facilitating mass transport, improving mechanical properties, and enabling fluid or gas infiltration. This level of porosity control allows for the customization of ceramic materials for specific purposes, including filtration, catalysis, energy storage, and biomaterials. Full article
(This article belongs to the Special Issue Advances in Micro- and Nanomaterials: Synthesis and Applications)
13 pages, 958 KiB  
Article
The Development and Optimization of a New Wind Tunnel Design for Odour Sampling
by Francesca Tagliaferri, Luca Carrera, Anna Albertini, Marzio Invernizzi and Selena Sironi
Atmosphere 2024, 15(10), 1181; https://doi.org/10.3390/atmos15101181 - 30 Sep 2024
Viewed by 234
Abstract
The characterization of passive area sources, emitting odours due to wind-driven convection, poses significant challenges. The present experimental study aims to evaluate the performance, in terms of fluid dynamics and mass transfer, of a recently developed wind tunnel, with a more compact design [...] Read more.
The characterization of passive area sources, emitting odours due to wind-driven convection, poses significant challenges. The present experimental study aims to evaluate the performance, in terms of fluid dynamics and mass transfer, of a recently developed wind tunnel, with a more compact design and reduced weight, compared to the one proposed by the Italian regulations. The results show that the new design outperforms the Italian standard in several aspects. From a fluid dynamic point of view, the new wind tunnel exhibits a slightly more homogenous and uniform velocity distribution, and it does not reveal airflow preferential channels inside the central body. The pressure tests highlight that the presence of fillers in the new wind tunnel does not significantly alter the pressure inside the hood and therefore the gas–liquid equilibrium conditions; actually, the slight overpressure may help to prevent the infiltration of external air. Finally, mass transfer tests on the standard device show a vertical concentration gradient along the outlet duct, highlighting concentration values that differ up to a factor of two depending on the measurement point. The new design has almost completely solved this issue, thanks to the use of fillers that promote mixing of the outlet flow. Full article
(This article belongs to the Special Issue Atmospheric Pollutants: Monitoring and Observation)
14 pages, 2484 KiB  
Article
Local Application of a New Chalconic Derivative (Chalcone T4) Reduces Inflammation and Oxidative Stress in a Periodontitis Model in Rats
by Angelo Constantino Camilli, Mariely Araújo de Godoi, Vitória Bonan Costa, Natalie Aparecida Rodrigues Fernandes, Giovani Cirelli, Larissa Kely Faustino da Silva, Letícia Ribeiro Assis, Luis Octavio Regasini and Morgana Rodrigues Guimarães-Stabili
Antioxidants 2024, 13(10), 1192; https://doi.org/10.3390/antiox13101192 - 30 Sep 2024
Viewed by 292
Abstract
Chalcones are phenolic compounds with biological properties. This study had the aim to evaluate the effects of topical administration of a new synthetic chalcone, Chalcone T4, in an animal model of periodontitis induced by ligature. Forty rats were distributed in the following experimental [...] Read more.
Chalcones are phenolic compounds with biological properties. This study had the aim to evaluate the effects of topical administration of a new synthetic chalcone, Chalcone T4, in an animal model of periodontitis induced by ligature. Forty rats were distributed in the following experimental groups: negative control (without periodontitis and topical application of distilled water), positive control (periodontitis and topical application of distilled water), chalcone I and II (periodontitis and topical application of 0.6 mg/mL and 1.8 mg/mL, respectively). Chalcone or distilled water was administered into the gingival sulcus of the first molars daily for 10 days, starting with the ligature installation. The following outcomes were evaluated: alveolar bone loss (µCT and methylene blue dye staining), quantification of osteoclasts (histomorphometry), cell infiltrate and collagen content (stereometry), gene expression of mediators (Nfact11, Tnf-α, Mmp-13, iNos, Sod and Nrf2) by (RT-qPCR); expression of BCL-2 and Caspase-1 (immunohistochemistry). Chalcone T4 inhibited bone resorption and prevented collagen matrix degradation. Reduction in the expression of inflammatory markers (Nfact11, Tnf-α, Mmp-13, and Caspase-1), attenuation of oxidative stress (iNOS reduction, and increase in Sod), and pro-apoptotic effect of the compound (BCL-2 reduction), were associated its effects on periodontal tissues. Topical application of Chalcone T4 prevented bone resorption and inflammation, demonstrating potential in the adjunctive treatment of periodontitis. Full article
(This article belongs to the Special Issue Antioxidant Activity of Polyphenolic Extracts)
21 pages, 712 KiB  
Review
Quantitative Assessment of Body Composition in Cirrhosis
by Christian Skou Eriksen and Søren Møller
Diagnostics 2024, 14(19), 2191; https://doi.org/10.3390/diagnostics14192191 - 30 Sep 2024
Viewed by 175
Abstract
Changes in body composition often accompany the progression of liver disease and seem to be an aggravating pathophysiological factor. Specifically, accelerated loss of skeletal muscle mass, lower muscle quality, and changes in body fat distribution have been shown to be associated with poor [...] Read more.
Changes in body composition often accompany the progression of liver disease and seem to be an aggravating pathophysiological factor. Specifically, accelerated loss of skeletal muscle mass, lower muscle quality, and changes in body fat distribution have been shown to be associated with poor clinical outcomes. The aim of the present narrative review was to discuss the current status and relevance of commonly applied, advanced, non-invasive methods to quantify skeletal muscle mass, muscle fat infiltration—i.e., myosteatosis—and fat distribution. This review focuses in particular on Computed Tomography (CT), Dual-energy X-ray Absorptiometry (DXA), Bioelectrical Impedance Analysis (BIA), Magnetic Resonance Imaging (MRI), and Ultrasonography (US). We propose future directions to enhance the diagnostic and prognostic relevance of using these methods for quantitative body composition assessment in patients with cirrhosis. Full article
(This article belongs to the Special Issue Diagnosis, Treatment, and Prognosis of Liver Cirrhosis)
23 pages, 12285 KiB  
Article
Bioinformatic-Experimental Screening Uncovers Multiple Targets for Increase of MHC-I Expression through Activating the Interferon Response in Breast Cancer
by Xin Li, Zilun Ruan, Shuzhen Yang, Qing Yang, Jinpeng Li and Mingming Hu
Int. J. Mol. Sci. 2024, 25(19), 10546; https://doi.org/10.3390/ijms251910546 - 30 Sep 2024
Viewed by 286
Abstract
Expression of major histocompatibility complex I (MHC-I) on tumor cells is extremely important for the antitumor immune response for its essential role in activating various immune cells, including tumor-specific CD8+ T cells. Cancers of lower MHC-I expression commonly exhibit less immune cell infiltration [...] Read more.
Expression of major histocompatibility complex I (MHC-I) on tumor cells is extremely important for the antitumor immune response for its essential role in activating various immune cells, including tumor-specific CD8+ T cells. Cancers of lower MHC-I expression commonly exhibit less immune cell infiltration and worse prognosis in clinic. In this study, we conducted bioinformatic-experimental screening to identify potential gene targets to enhance MHC-I expression in breast cancer (BRCA). Through a combination of MHC-I scoring, gene expression correlation analysis, survival prognostication, and Cibersort tumor-infiltrated lymphocytes (TILs) scoring, we identify 144 genes negatively correlated with both MHC-I expression and TILs in breast cancer. Furthermore, we verified partially according to KEGG functional enrichment or gene-dependency analysis and figured out multiple genes, including PIP5K1A, NCKAP1, CYFIP1, DIS3, TBP, and EXOC1, as effective gene targets for increasing MHC-I expression in breast cancer. Mechanistically, knockout of each of these genes activated the intrinsic interferon response in breast cancer cells, which not only promoted MHC-I expression but also caused immunogenic cell death of breast cancer. Finally, the scRNA-seq confirmed the negative correlation of PIP5K1A et al. with TILs in breast cancer patients. Collectively, we identified multiple gene targets for an increase in MHC-I expression in breast cancer in this study. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Graphical abstract

Back to TopTop