Sign in to use this feature.

Years

Between: -

Search Results (4,348)

Search Parameters:
Keywords = quenching

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 974 KiB  
Article
Schwinger–Keldysh Path Integral Formalism for a Quenched Quantum Inverted Oscillator
by Sayantan Choudhury, Suman Dey, Rakshit Mandish Gharat, Saptarshi Mandal and Nilesh Pandey
Symmetry 2024, 16(10), 1308; https://doi.org/10.3390/sym16101308 - 3 Oct 2024
Viewed by 358
Abstract
In this work, we study the time-dependent behavior of quantum correlations of a system of an inverted oscillator governed by out-of-equilibrium dynamics using the well-known Schwinger–Keldysh formalism in the presence of quantum mechanical quench. Considering a generalized structure of a time-dependent Hamiltonian for [...] Read more.
In this work, we study the time-dependent behavior of quantum correlations of a system of an inverted oscillator governed by out-of-equilibrium dynamics using the well-known Schwinger–Keldysh formalism in the presence of quantum mechanical quench. Considering a generalized structure of a time-dependent Hamiltonian for an inverted oscillator system, we use the invariant operator method to obtain its eigenstate and continuous energy eigenvalues. Using the expression for the eigenstate, we further derive the most general expression for the generating function as well as the out-of-time-ordered correlators (OTOCs) for the given system using this formalism. Further, considering the time-dependent coupling and frequency of the quantum inverted oscillator characterized by quench parameters, we comment on the dynamical behavior, specifically the early, intermediate and late time-dependent features of the OTOC for the quenched quantum inverted oscillator. Next, we study a specific case, where the system of an inverted oscillator exhibits chaotic behavior by computing the quantum Lyapunov exponent from the time-dependent behavior of OTOCs in the presence of the given quench profile. Full article
(This article belongs to the Special Issue Symmetry: Feature Papers 2024)
16 pages, 4027 KiB  
Article
Walnut Shell Biomass Triggered Formation of Fe3C-Biochar Composite for Removal of Diclofenac by Activating Percarbonate
by Na Zhang, Yudong Huo, Chun Pei, Ying Zhang, Lijie Xu and Lu Gan
Catalysts 2024, 14(10), 687; https://doi.org/10.3390/catal14100687 - 3 Oct 2024
Viewed by 219
Abstract
Percarbonate (SPC) as a promising substitute for liquid H2O2 has many advantages in the application of in situ chemical oxidation (ISCO). Developing efficient, cost effective and environmentally friendly catalysts for SPC activation plays the key role in promoting the development [...] Read more.
Percarbonate (SPC) as a promising substitute for liquid H2O2 has many advantages in the application of in situ chemical oxidation (ISCO). Developing efficient, cost effective and environmentally friendly catalysts for SPC activation plays the key role in promoting the development of SPC-based ISCO. Herein, the walnut shell biomass was combined with ferric nitrate for the catalytic synthesis of Fe3C@biochar composite (Fe3C@WSB), which demonstrated high efficiency in activating SPC for the removal of diclofenac (DCF). The Fe3C showed average crystallite size of 32.6 nm and the composite Fe3C@WSB demonstrated strong adsorptivity. The prepared Fe3C@WSB could activate both SPC and H2O2 with high efficiency at ca. pH 3 with extremely low leaching of iron, while in a weak acidic condition, higher efficiency of DCF removal was obtained in the Fe3C@WSB/SPC process than in the Fe3C@WSB/H2O2 process. Moreover, the Fe3C@WSB/SPC and Fe3C@WSB/H2O2 processes did not show significant differences when supplied with varying amounts of catalyst or oxidant, but the Fe3C@WSB/SPC process exhibited stronger capability in dealing with relatively highly concentrated DCF solution. Based on quenching experiments and electron spin resonance (ESR) analysis, heterogeneous activation of SPC was assumed as the dominant route for DCF degradation, and both the oxidation by radicals, including •OH, •O2 and CO3•−, combined with electron transfer pathway contributed to DCF degradation in the Fe3C@WSB/SPC process. The cycling experiment results also revealed the stability of Fe3C@WSB. This work may cast some light on the development of efficient catalysts for the activation of SPC. Full article
(This article belongs to the Special Issue Advances in Catalytic Conversion of Biomass)
Show Figures

Figure 1

13 pages, 4891 KiB  
Article
Förster Resonance Energy Transfer and Enhanced Emission in Cs4PbBr6 Nanocrystals Encapsulated in Silicon Nano-Sheets for Perovskite Light Emitting Diode Applications
by Araceli Herrera Mondragon, Roberto Gonzalez Rodriguez, Noah Hurley, Sinto Varghese, Yan Jiang, Brian Squires, Maoding Cheng, Brooke Davis, Qinglong Jiang, Mansour Mortazavi, Anupama B. Kaul, Jeffery L. Coffer, Jingbiao Cui and Yuankun Lin
Nanomaterials 2024, 14(19), 1596; https://doi.org/10.3390/nano14191596 - 3 Oct 2024
Viewed by 259
Abstract
Encapsulating Cs4PbBr6 quantum dots in silicon nano-sheets not only stabilizes the halide perovskite, but also takes advantage of the nano-sheet for a compatible integration with the traditional silicon semiconductor. Here, we report the preparation of un-passivated Cs4PbBr6 [...] Read more.
Encapsulating Cs4PbBr6 quantum dots in silicon nano-sheets not only stabilizes the halide perovskite, but also takes advantage of the nano-sheet for a compatible integration with the traditional silicon semiconductor. Here, we report the preparation of un-passivated Cs4PbBr6 ellipsoidal nanocrystals and pseudo-spherical quantum dots in silicon nano-sheets and their enhanced photoluminescence (PL). For a sample with low concentrations of quantum dots in silicon nano-sheets, the emission from Cs4PbBr6 pseudo-spherical quantum dots is quenched and is dominated with Pb2+ ion/silicene emission, which is very stable during the whole measurement period. For a high concentration of Cs4PbBr6 ellipsoidal nanocrystals in silicon nano-sheets, we have observed Förster resonance energy transfer with up to 87% efficiency through the oscillation of two PL peaks when UV excitation switches between on and off, using recorded video and PL lifetime measurements. In an area of a non-uniform sample containing both ellipsoidal nanocrystals and pseudo-spherical quantum dots, where Pb2+ ion/silicene emissions, broadband emissions from quantum dots, and bandgap edge emissions (515 nm) appear, the 515 nm peak intensity increases five times over 30 min of UV excitation, probably due to a photon recycling effect. This irradiated sample has been stable for one year of ambient storage. Cs4PbBr6 quantum dots encapsulated in silicon nano-sheets can lead to applications of halide perovskite light emitting diodes (PeLEDs) and integration with traditional semiconductor materials. Full article
(This article belongs to the Special Issue Nanostructured Materials for Electric Applications)
Show Figures

Figure 1

12 pages, 4507 KiB  
Article
Novel Eu3+-Doped Glasses in the MoO3-WO3-La2O3-B2O3 System: Preparation, Structure and Photoluminescent Properties
by Lyubomir Aleksandrov, Margarita Milanova, Aneliya Yordanova, Reni Iordanova, Kenji Shinozaki, Tsuyoshi Honma and Takayuki Komatsu
Molecules 2024, 29(19), 4687; https://doi.org/10.3390/molecules29194687 - 3 Oct 2024
Viewed by 323
Abstract
Novel multicomponent glasses with nominal compositions of (50−x)MoO3:xWO3:25La2O3:25B2O3, x = 0, 10, 20, 30, 40, 50 mol% doped with 3 mol % Eu2O3 were prepared using a conventional [...] Read more.
Novel multicomponent glasses with nominal compositions of (50−x)MoO3:xWO3:25La2O3:25B2O3, x = 0, 10, 20, 30, 40, 50 mol% doped with 3 mol % Eu2O3 were prepared using a conventional melt-quenching method. Their structure, thermal behavior and luminescent properties were investigated by Raman spectroscopy, differential thermal analysis and photoluminescence spectroscopy. The optical properties of the glasses were investigated by UV–vis absorption spectroscopy and a determination of the refractive index. Physical parameters such as density, molar volume, oxygen molar volume and oxygen packing density were determined. The glasses are characterized by a high glass transition temperature. Raman analysis revealed that the glass structure is built up mainly from tetrahedral (MoO4)2− and (WO4)2− units providing Raman bands of around 317 cm−1, 341–352 cm−1, 832–820 cm−1 and 928–935 cm−1. At the same time, with the replacement of MoO3 with WO3 some fraction of WO6 octahedra are produced, the number of which increases with the increasing WO3 content. A strong red emission from the 5D0 level of Eu3+ ions was registered under near-UV (397 nm) excitation using the 7F05L6 transition of Eu3+. Photoluminescence (PL) emission gradually increases with increasing WO3 content, evidencing that WO3 is a more appropriate component than MoO3. The integrated fluorescence intensity ratio R (5D07F2/5D07F1) was calculated to estimate the degree of asymmetry around the active ion, suggesting a location of Eu3+ in non-centrosymmetric sites. All findings suggest that the investigated glasses are potential candidates for red light-emitting phosphors. Full article
Show Figures

Figure 1

16 pages, 1820 KiB  
Article
Critical Cooling Rate of Fast-Crystallizing Polyesters: The Example of Poly(alkylene trans-1,4-cyclohexanedicarboxylate)
by Kylian Hallavant, Michelina Soccio, Giulia Guidotti, Nadia Lotti, Antonella Esposito and Allisson Saiter-Fourcin
Polymers 2024, 16(19), 2792; https://doi.org/10.3390/polym16192792 - 1 Oct 2024
Viewed by 255
Abstract
Controlling the cooling rate experienced by a material during a manufacturing process is a challenge and a major issue. Industrial processing techniques are very diverse and may involve a whole range of cooling rates, which are sometimes extremely high for small and/or thin [...] Read more.
Controlling the cooling rate experienced by a material during a manufacturing process is a challenge and a major issue. Industrial processing techniques are very diverse and may involve a whole range of cooling rates, which are sometimes extremely high for small and/or thin manufactured parts. For polymers, the cooling rate has consequences on both the microstructure and the time-dependent properties. The common cooling rates associated with conventional calorimetric measurements are generally limited to a few tens of degrees per minute. This work combines several calorimetric techniques (DSC, modulated-temperature DSC, stochastically-modulated DSC and Fast Scanning Calorimetry) to estimate the critical cooling rate required to melt-quench fast-crystallizing polyesters to their fully amorphous state, based on the example of a series of poly(alkylene trans-1,4-cyclohexanedicarboxylate) (PCHs) with a number of methylene groups in the main structure of the repeating unit nCH2 varying from 3 to 6. The even-numbered ones require faster cooling rates (about 3000 K s−1 for nCH2 = 4, between 500 and 1000 K s−1 for nCH2 = 6) compared to the odd-numbered ones (between 50 K min−1 and 100 K s−1 for nCH2 = 3, between 10 and 30 K min−1 for nCH2 = 5). Full article
Show Figures

Figure 1

11 pages, 2977 KiB  
Article
A Fluorescence Strategy Based on Guanidinylated Carbon Dots and FAM-Labeled ssDNA for Facile Detection of Lipopolysaccharide
by Zongfu Zheng, Junrong Li, Gengping Pan, Jing Wang, Yao Wang, Kai Peng, Xintian Zhang, Zhengjun Huang and Shaohuang Weng
Chemosensors 2024, 12(10), 201; https://doi.org/10.3390/chemosensors12100201 - 1 Oct 2024
Viewed by 238
Abstract
The detection of lipopolysaccharide (LPS) has important value for the monitoring of diseases such as sepsis and the impurity control of drugs. In this work, we prepared guanidinylated carbon dots (GQ-CDs) and used them to adsorb 5-carboxyfluorescein (FAM)-labeled single-stranded DNA (ssDNA) to become [...] Read more.
The detection of lipopolysaccharide (LPS) has important value for the monitoring of diseases such as sepsis and the impurity control of drugs. In this work, we prepared guanidinylated carbon dots (GQ-CDs) and used them to adsorb 5-carboxyfluorescein (FAM)-labeled single-stranded DNA (ssDNA) to become GQ-CDs/FAM-DNA, resulting in quenched FAM. The quenching efficiency of the FAM-DNA by GQ-CDs in the GQ-CDs/FAM-DNA system was 91.95%, and this quenching was stable over the long term. Upon the addition of LPS, the quenched FAM-DNA in the GQ-CDs/FAM-DNA system regained fluorescence at 520 nm. The mechanism studies found that the addition of LPS promoted the dissociation of FAM-DNA adsorbed on GQ-CDs, thereby restoring fluorescence. The degree of fluorescence recovery was closely related to the content of LPS. Under optimized conditions, the fluorescence recovery was linearly related to LPS concentrations ranging from 5 to 90 μg/mL, with a detection limit of 0.75 μg/mL. The application of this method to plasma samples and trastuzumab injections demonstrated good spiked recoveries and reproducibility. This platform, based on GQ-CDs for the adsorption and quenching of FAM-DNA, enables the detection of LPS through relatively simple mixing operations, showing excellent competitiveness for the determination of actual samples under various conditions. Full article
Show Figures

Figure 1

19 pages, 425 KiB  
Article
Finite Time Path Field Theory Perturbative Methods for Local Quantum Spin Chain Quenches
by Domagoj Kuić, Alemka Knapp and Diana Šaponja-Milutinović
Universe 2024, 10(10), 384; https://doi.org/10.3390/universe10100384 - 30 Sep 2024
Viewed by 321
Abstract
We discuss local magnetic field quenches using perturbative methods of finite time path field theory (FTPFT) in the following spin chains: Ising and XY in a transverse magnetic field. Their common characteristics are: (i) they are integrable via mapping to a second quantized [...] Read more.
We discuss local magnetic field quenches using perturbative methods of finite time path field theory (FTPFT) in the following spin chains: Ising and XY in a transverse magnetic field. Their common characteristics are: (i) they are integrable via mapping to a second quantized noninteracting fermion problem; and (ii) when the ground state is nondegenerate (true for finite chains except in special cases), it can be represented as a vacuum of Bogoliubov fermions. By switching on a local magnetic field perturbation at finite time, the problem becomes nonintegrable and must be approached via numeric or perturbative methods. Using the formalism of FTPFT based on Wigner transforms (WTs) of projected functions, we show how to: (i) calculate the basic “bubble” diagram in the Loschmidt echo (LE) of a quenched chain to any order in the perturbation; and (ii) resum the generalized Schwinger–Dyson equation for the fermion two-point retarded functions in the “bubble” diagram, hence achieving the resummation of perturbative expansion of LE for a wide range of perturbation strengths under certain analyticity assumptions. Limitations of the assumptions and possible generalizations beyond it and also for other spin chains are further discussed. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2023—Field Theory)
Show Figures

Figure 1

11 pages, 4274 KiB  
Article
Revisiting Rare Earth Permanent Magnetic Alloys of Nd-Fe-C
by Jianing Fan, Bang Zhou, Hongya Yu and Zhongwu Liu
Metals 2024, 14(10), 1115; https://doi.org/10.3390/met14101115 - 30 Sep 2024
Viewed by 263
Abstract
Nd-Fe-C alloys have been reported as hard magnetic materials with a potential higher coercivity than Nd-Fe-B alloys. However, it has been seldom studied since its intrinsic properties were investigated in the last century. Here, we revisited the structure, phase precipitation and magnetic properties [...] Read more.
Nd-Fe-C alloys have been reported as hard magnetic materials with a potential higher coercivity than Nd-Fe-B alloys. However, it has been seldom studied since its intrinsic properties were investigated in the last century. Here, we revisited the structure, phase precipitation and magnetic properties of rapidly quenched ternary Nd-Fe-C alloys for further understanding their composition-microstructure-property relationships. The Nd10+xFe84−xC6 (x = −2, 0, 2, 3, 4, 5) alloys with various compositions were prepared by melt spinning. The results show that the hard magnetic Nd2Fe14C phase can be hardly formed in the as-spun alloys. Instead, the alloys are composed of soft magnetic α-Fe phase and planar anisotropic Nd2Fe17Cx phase. After annealing above 650 °C, the Nd2Fe14C phase is precipitated by the peritectoid reaction. All optimally annealed alloys contain Nd2Fe14C and Nd2Fe17Cx phases, while the presence and content of α-Fe phase are determined by the alloy composition. The crystallization degree of the as-spun alloys has an effect on their magnetic properties after annealing. After the annealing treatment, partly crystallized as-spun alloys exhibit better magnetic properties than the amorphous alloys. The intrinsic coercivity Hcj = 847 kA/m, remanence Jr = 0.69 T, and maximum energy product (BH)max = 64.3 kJ/m3 were obtained in the Nd14Fe80C6 alloy annealed at 725 °C. The formation of the Nd2Fe14C and Nd2Fe17Cx phases with the Nd2O3 phase precipitated at the triangular grain boundaries is responsible for its relatively good properties. Although the magnetic properties of Nd-Fe-C alloys obtained in this work are inferior to those of Nd-Fe-B, the present results help us to further understand the magnetic behavior of Nd-Fe-C alloys. Full article
(This article belongs to the Section Metallic Functional Materials)
Show Figures

Graphical abstract

13 pages, 3304 KiB  
Article
Upgrading Biomass Wastes to Graphene Quantum Dots with White-Light-Emitting Features in the Solid State
by Pierre Magri, Pascal Franchetti, Jean-Jacques Gaumet, Benoit Maxit, Sébastien Diliberto and Philippe Pierrat
Appl. Sci. 2024, 14(19), 8807; https://doi.org/10.3390/app14198807 - 30 Sep 2024
Viewed by 322
Abstract
The emergence of bio-based carbonaceous materials for various applications has attracted significant attention during the last few years. Here, we report a rapid, efficient, and reproducible microwave-assisted synthesis of graphene quantum dots (GQDs) with identical features irrespective of the nature of biomass waste [...] Read more.
The emergence of bio-based carbonaceous materials for various applications has attracted significant attention during the last few years. Here, we report a rapid, efficient, and reproducible microwave-assisted synthesis of graphene quantum dots (GQDs) with identical features irrespective of the nature of biomass waste investigated. The synthesized GQDs were fully characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, transmission electron microscopy, and dynamic light scattering. The nanoparticles displayed narrow sizes of 1–2 nm and high solubility in polar solvents such as water and ethanol. The protocol described herein is advantageous in comparison to dealing with the synthesis of GQDs from biomass waste previously reported since our protocol is faster owing to the use of microwave heating and the avoidance of dialysis for the purification step. Furthermore, in solution, the water-soluble particles showed excitation-dependent photoluminescence ranging from blue to orange emission wavelengths. Interestingly, thin films displayed white-light emission under 325 nm UV-light excitation, while aggregation-induced quenching was usually observed, opening the way for their potential use as a phosphor in white-light-emitting diodes. Full article
(This article belongs to the Special Issue Advances in Organic Synthetic Chemistry)
Show Figures

Figure 1

16 pages, 7715 KiB  
Article
Peroxymonosulfate Activation by Fe@N Co-Doped Biochar for the Degradation of Sulfamethoxazole: The Key Role of Pyrrolic N
by Tong Liu, Chenxuan Li, Xing Chen, Yihan Chen, Kangping Cui, Dejin Wang and Qiang Wei
Int. J. Mol. Sci. 2024, 25(19), 10528; https://doi.org/10.3390/ijms251910528 - 30 Sep 2024
Viewed by 235
Abstract
In this study, Fe, N co-doped biochar (Fe@N co-doped BC) was synthesized by the carbonization–pyrolysis method and used as a carbocatalyst to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. In the Fe@N co-doped BC/PMS system, the degradation efficiency of SMX (10.0 mg·L−1 [...] Read more.
In this study, Fe, N co-doped biochar (Fe@N co-doped BC) was synthesized by the carbonization–pyrolysis method and used as a carbocatalyst to activate peroxymonosulfate (PMS) for sulfamethoxazole (SMX) removal. In the Fe@N co-doped BC/PMS system, the degradation efficiency of SMX (10.0 mg·L−1) was 90.2% within 40 min under optimal conditions. Radical quenching experiments and electron spin resonance (ESR) analysis suggested that sulfate radicals (SO4•−), hydroxyl radicals (OH), and singlet oxygen (1O2) participated in the degradation process. After the reaction, the proportion of pyrrolic N decreased from 57.9% to 27.1%. Pyrrolic N served as an active site to break the inert carbon network structure and promote the generation of reactive oxygen species (ROS). In addition, pyrrolic N showed a stronger interaction with PMS and significantly reduced the activation energy required for the reaction (∆G = 23.54 kcal/mol). The utilization potentiality of Fe@N co-doped BC was systematically evaluated in terms of its reusability and selectivity to organics. Finally, the intermediates of SMX were also detected. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

16 pages, 7218 KiB  
Article
Analysis of Punicalin and Punicalagin Interaction with PDIA3 and PDIA1
by Giorgia Meschiari, Marco Minacori, Sara Fiorini, Mariassunta Tedesco, Margherita Eufemi and Fabio Altieri
Int. J. Mol. Sci. 2024, 25(19), 10531; https://doi.org/10.3390/ijms251910531 - 30 Sep 2024
Viewed by 363
Abstract
PDIA3 is a pleiotropic protein primarily located in the endoplasmic reticulum where it is involved in protein folding, catalyzing the formation, breakage, and rearrangement of disulfide bonds. PDIA3 is implicated in numerous pathologies such as cancer, inflammation, and neurodegeneration. Although punicalagin has been [...] Read more.
PDIA3 is a pleiotropic protein primarily located in the endoplasmic reticulum where it is involved in protein folding, catalyzing the formation, breakage, and rearrangement of disulfide bonds. PDIA3 is implicated in numerous pathologies such as cancer, inflammation, and neurodegeneration. Although punicalagin has been proven to be a highly promising PDIA3 inhibitor and can be used as target protein in glioblastoma, it does not have sufficient selectivity for PDIA3 and is a quite-large molecule. With the aim of finding punicalagin derivatives with a simplified structure, we selected punicalin, which lacks the hexahydroxy-diphenic acid moiety. Previous docking studies suggest that this part of the molecule is not involved in the binding with PDIA3. In this study we compared the ability of punicalin to bind and inhibit PDIA3 and PDIA1. Tryptophan fluorescence quenching and disulfide reductase activity (using both glutathione and insulin as substrates) were evaluated, demonstrating the ability of punicalin to bind and inhibit PDIA3 even to a lesser extent compared to punicalagin. On the other hand, punicalin showed a very low inhibition activity towards PDIA1, demonstrating a higher selectivity for PDIA3. Protein thermal shift assay evidenced that both proteins can be destabilized by punicalin as well as punicalagin, with PDIA3 much more sensitive. Additionally, punicalin showed a higher change in the thermal stability of PDIA3, with a shift up to 8 °C. This result could explain the presence of PDIA3 aggregates, evidenced by immunofluorescence analysis, that accumulate within treated cells and that are more evident in the presence of punicalin. The results here obtained show punicalin is able to bind both proteins but with a higher selectivity for PDIA3, suggesting the possibility of developing new molecules with a simplified structure that are still able to selectively bind and inhibit PDIA3. Full article
Show Figures

Figure 1

15 pages, 8452 KiB  
Article
Cooling Rate and Compositional Effects on Microstructural Evolution and Mechanical Properties of (CoCrCuTi)100−xFex High-Entropy Alloys
by Brittney Terry and Reza Abbaschian
Entropy 2024, 26(10), 826; https://doi.org/10.3390/e26100826 - 29 Sep 2024
Viewed by 271
Abstract
This study investigates the impact of cooling rate and alloy composition on phase formations and properties of (CoCrCuTi)100−xFex (x = 0, 5, 10, 12.5, 15) high-entropy alloys (HEAs). Samples were synthesized using arc-melting and electromagnetic levitation, followed by quenching through [...] Read more.
This study investigates the impact of cooling rate and alloy composition on phase formations and properties of (CoCrCuTi)100−xFex (x = 0, 5, 10, 12.5, 15) high-entropy alloys (HEAs). Samples were synthesized using arc-melting and electromagnetic levitation, followed by quenching through the use of a Cu chill or V-shaped Cu mold. Cooling rates were evaluated by measuring dendrite arm spacings (DASs), employing the relation DAS = k ɛ−n, where constants k = 16 and n = ½. Without Fe addition, a microstructure consisting of BCC1 + BCC2 phases formed, along with an interdendritic (ID) FCC Cu-rich phase. However, with the addition of 5–10% Fe, a Cu-lean C14 Laves phase emerged, accompanied by a Cu-rich ID FCC phase. For cooling rates below 75 K/s, alloys containing 10% Fe exhibited liquid phase separation (LPS), characterized by globular Cu-rich structures within the Cu-lean liquid. In contrast, for the same composition, higher cooling rates of 400–700 K/s promoted a dendritic/interdendritic microstructure. Alloys with 12.5–15 at. % Fe displayed LPS irrespective of the cooling rate, although an increase in uniformity was noted at rates exceeding 700 K/s. Vickers hardness and fracture toughness generally increased with Fe content, with hardness ranging from 444 to 891 HV. The highest fracture toughness (5.5 ± 0.4 KIC) and hardness (891 ± 66 HV) were achieved in samples containing 15 at. % Fe, cooled at rates of 25–75 K/s. Full article
(This article belongs to the Special Issue Recent Advances in High Entropy Alloys)
Show Figures

Figure 1

18 pages, 6298 KiB  
Article
Multi-Color Phosphor-Converted Wide Spectrum LED Light Source for Simultaneous Illumination and Visible Light Communication
by Aayushi Soni, Linthish Pulikkool, Ravibabu Mulaveesala, Satish Kumar Dubey and Dalip Singh Mehta
Photonics 2024, 11(10), 914; https://doi.org/10.3390/photonics11100914 - 27 Sep 2024
Viewed by 449
Abstract
Simultaneous illumination and communication using solid-state lighting devices like white light-emitting diode (LED) light sources is gaining popularity. The white light LED comprises a single-colored yellow phosphor excited by the blue LED chip. Therefore, color-quality determining parameters like color-rendering index (CRI), correlated color [...] Read more.
Simultaneous illumination and communication using solid-state lighting devices like white light-emitting diode (LED) light sources is gaining popularity. The white light LED comprises a single-colored yellow phosphor excited by the blue LED chip. Therefore, color-quality determining parameters like color-rendering index (CRI), correlated color temperature (CCT), and CIE 1931 chromaticity coordinates of generic white LED sources are poor. This article presents the development of multi-color phosphors excited by a blue LED to improve light quality and bandwidth. A multi-layer stacking of phosphor layers excited by a blue LED led to the quenching of photoluminescence (PL) and showed limited bandwidth. To solve this problem, a lens-free, electrically powered, broadband white light source is designed by mounting multi-color phosphor LEDs in a co-planar ring-topology. The CRI, CCT, and CIE 1931 chromaticity coordinates of the designed lamp (DL) were found to be 90, 5114 K, and (0.33, 0.33), respectively, which is a good quality lamp for indoor lighting. CRI of DL was found to be 16% better than that of white LED (WL). Assessment of visible light communications (VLC) feasibility using the DL includes time interval error (TIE) of data pattern or jitter analysis, eye diagram, signal-to-noise ratio (SNR), fast Fourier transform (FFT), and power spectral density (PSD). DL transmits binary data stream faster than WL due to a reduction in rise time and total jitter by 31% and 39%, respectively. The autocorrelation function displayed a narrow temporal pulse for DL. The DL is beneficial for providing high-quality illumination indoors while minimizing PL quenching. Additionally, it is suitable for indoor VLC applications. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in LED Technology)
Show Figures

Figure 1

15 pages, 3580 KiB  
Article
NIR-Sensitive Squaraine Dye—Peptide Conjugate for Trypsin Fluorogenic Detection
by Priyanka Balyan, Shekhar Gupta, Sai Kiran Mavileti, Shyam S. Pandey and Tamaki Kato
Biosensors 2024, 14(10), 458; https://doi.org/10.3390/bios14100458 - 25 Sep 2024
Viewed by 416
Abstract
Trypsin enzyme has gained recognition as a potential biomarker in several tumors, such as colorectal, gastric, and pancreatic cancer, highlighting its importance in disease diagnosis. In response to the demand for rapid, cost-effective, and real-time detection methods, we present an innovative strategy utilizing [...] Read more.
Trypsin enzyme has gained recognition as a potential biomarker in several tumors, such as colorectal, gastric, and pancreatic cancer, highlighting its importance in disease diagnosis. In response to the demand for rapid, cost-effective, and real-time detection methods, we present an innovative strategy utilizing the design and synthesis of NIR-sensitive dye–peptide conjugate (SQ-3 PC) for the sensitive and selective monitoring of trypsin activity by fluorescence ON/OFF sensing. The current research deals with the design and synthesis of three unsymmetrical squaraine dyes SQ-1, SQ-2, and SQ-3 along with a dye–peptide conjugate SQ-3-PC as a trypsin-specific probe followed by their photophysical characterizations. The absorption spectral investigation conducted on both the dye alone and its corresponding dye–peptide conjugates in water, utilizing SQ-3 and SQ-3 PC respectively, reveals enhanced dye aggregation and pronounced fluorescence quenching compared to observations in DMSO solution. The absorption spectral investigation conducted on dye only and corresponding dye–peptide conjugates in water utilizing SQ-3 and SQ-3 PC, respectively, reveals not only the enhanced dye aggregation but also pronounced fluorescence quenching compared to that observed in the DMSO solution. The trypsin-specific probe SQ-3 PC demonstrated a fluorescence quenching efficiency of 61.8% in water attributed to the combined effect of aggregation-induced quenching (AIQ) and fluorescence resonance energy transfer (FRET). FRET was found to be dominant over AIQ. The trypsin-mediated hydrolysis of SQ-3 PC led to a rapid and efficient recovery of quenched fluorescence (5-fold increase in 30 min). Concentration-dependent changes in the fluorescence at the emission maximum of the dyes reveal that SQ-3 PC works as a trypsin enzyme-specific fluorescence biosensor with linearity up to 30 nM along with the limit of detection and limit of quantification of 1.07 nM and 3.25 nM, respectively. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology)
Show Figures

Figure 1

46 pages, 3082 KiB  
Review
Beyond Antibiotics: What the Future Holds
by Payam Benyamini
Antibiotics 2024, 13(10), 919; https://doi.org/10.3390/antibiotics13100919 - 25 Sep 2024
Viewed by 703
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level [...] Read more.
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O’Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen’s virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual’s macroflora to combat MDR bacterial infections. Full article
Show Figures

Figure 1

Back to TopTop