Sign in to use this feature.

Years

Between: -

Search Results (5,268)

Search Parameters:
Keywords = soybean

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2610 KiB  
Article
Overexpression of GmXTH1 Enhances Salt Stress Tolerance in Soybean
by Yang Song, Kun Wang, Dan Yao, Qi Zhang, Boran Yuan and Piwu Wang
Agronomy 2024, 14(10), 2276; https://doi.org/10.3390/agronomy14102276 - 3 Oct 2024
Abstract
Soybean is an important grain, oil and feed crop, which plays an important role in ensuring national food security. However, soil salinization hinders and destroys the normal physiological metabolism of soybean, resulting in the abnormal growth or death of soybean. The XTH gene [...] Read more.
Soybean is an important grain, oil and feed crop, which plays an important role in ensuring national food security. However, soil salinization hinders and destroys the normal physiological metabolism of soybean, resulting in the abnormal growth or death of soybean. The XTH gene can modify the plant cell wall and participate in the response and adaptation of plants to negative stress. To elucidate the role of the overexpressed GmXTH1 gene under NaCl-induced stress in soybean, we determined the germination rate, the germination potential, the germination index, seedling SOD activity, POD activity, the MDA content and the MDA content during the germination stage of the overexpressed lines of the GmXTH1 gene, the OEAs (OEA1, OEA2 and OEA3), the interference expression line IEA2, the control mutant M18, the CAT content and the chlorophyll content. The relative expression of the GmXTH1 gene in the material OEA1 and the contents of Na+ and K+ in the roots after stress were also determined. The results showed that OEAs exhibited enhanced germination indices, including the germination rate and germination potential, and were less sensitive to stress compared with the mutant M18. In contrast, the inhibitory effect of NaCl was more pronounced in the line with a disturbed expression of GmXTH1 (IEA2). The OEAs exhibited more enzyme activities and a lower MDA content, indicating reduced oxidative stress, and maintained higher chlorophyll levels, suggesting improved photosynthetic capacity. Relative expression analysis showed that the GmXTH1 gene was rapidly up-regulated in response to NaCl, peaking at 4 h after treatment, and subsequently declining. This temporal expression pattern correlated with the enhanced salt tolerance observed in OEA1. Notably, OEA1 accumulated more Na+ and maintained higher K+ levels, indicating effective ionic homeostasis under stress. Collectively, these results suggest that the overexpression of the GmXTH1 gene may positively regulate plant responses to salt stress by modulating the antioxidant defense and ion transport mechanisms. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 2101 KiB  
Article
Microwave Irradiation as a Powerful Tool for Isolating Isoflavones from Soybean Flour
by Sanja Đurović, Bogdan Nikolić, Boris Pisinov, Dušan Mijin and Zorica Knežević-Jugović
Molecules 2024, 29(19), 4685; https://doi.org/10.3390/molecules29194685 - 2 Oct 2024
Viewed by 208
Abstract
The use of microwave irradiation energy for isolating bioactive compounds from plant materials has gained popularity due to its ability to penetrate cells and facilitate extraction of intracellular materials, with the added benefits of minimal or no use of organic solvents. This is [...] Read more.
The use of microwave irradiation energy for isolating bioactive compounds from plant materials has gained popularity due to its ability to penetrate cells and facilitate extraction of intracellular materials, with the added benefits of minimal or no use of organic solvents. This is particularly significant due to the possibility of using extracts in the food and pharmaceutical industries. The aim of this work is to examine the effect of microwave irradiation on the extraction of three of the most important isoflavones from soybean flour, glycitin, genistin, and daidzin, as well as their aglycones, glycitein, genistein, and daidzein. By varying the extraction time, temperature, and microwave power, we have established the optimal parameters (irradiation power of 75 W for 5 min) for the most efficient extraction of individual isoflavones. Compared to conventional maceration and ultrasound-assisted extraction, the total phenol content of the extracts increased from 3.66 to 9.16 mg GAE/g dw and from 4.67 to 9.16 mg GAE/g dw, respectively. The total flavonoid content increased from 0.38 to 0.83 mg CE/g dw and from 0.48 to 0.83 mg CE/g dw, and the antioxidant activity increased from 96.54 to 185.04 µmol TE/g dw and from 158.57 to 185.04 µmol TE/g dw, but also from 21.97 to 37.16 µmol Fe2+/g dw and from 30.13 to 37.16 µmol Fe2+/g dw. The positive correlation between microwave extraction and increased levels of total phenols, flavonoids, and antioxidant activity demonstrates the method’s effectiveness in producing bioactive compounds. Considering the growing recognition of glycitein’s potential role in medical and pharmaceutical applications, microwave-assisted extraction under optimized conditions has proven highly efficient. Full article
(This article belongs to the Special Issue The Application of Microwave-Assisted Technology in Chemical Reaction)
Show Figures

Figure 1

18 pages, 3892 KiB  
Article
Differential Drought Responses of Soybean Genotypes in Relation to Photosynthesis and Growth-Yield Attributes
by Md. Saddam Hossain, Md. Arifur Rahman Khan, Apple Mahmud, Uttam Kumar Ghosh, Touhidur Rahman Anik, Daniel Mayer, Ashim Kumar Das and Mohammad Golam Mostofa
Plants 2024, 13(19), 2765; https://doi.org/10.3390/plants13192765 - 2 Oct 2024
Viewed by 222
Abstract
Water scarcity leads to significant ecological challenges for global farming production. Sustainable agriculture depends on developing strategies to overcome the impacts of drought on important crops, including soybean. In this present study, seven promising soybean genotypes were evaluated for their drought tolerance potential [...] Read more.
Water scarcity leads to significant ecological challenges for global farming production. Sustainable agriculture depends on developing strategies to overcome the impacts of drought on important crops, including soybean. In this present study, seven promising soybean genotypes were evaluated for their drought tolerance potential by exposing them to water deficit conditions. The control group was maintained at 100% field capacity (FC), while the drought-treated group was maintained at 50% FC on a volume/weight basis. This treatment was applied at the second trifoliate leaf stage and continued until maturity. Our results demonstrated that water shortage exerted negative impacts on soybean phenotypic traits, physiological and biochemical mechanisms, and yield output in comparison with normal conditions. Our results showed that genotype G00001 exhibited the highest leaf area plant−1 (483.70 cm2), photosynthetic attributes like stomatal conductance (gs) (0.15 mol H2O m−2 s−1) and photosynthetic rate (Pn) (13.73 μmol CO2 m−2 s−1), and xylem exudation rate (0.25 g h−1) under drought conditions. The G00001 genotype showed greater leaf greenness by preserving photosynthetic pigments (total chlorophylls (Chls) and carotenoids; 4.23 and 7.34 mg g−1 FW, respectively) in response to drought conditions. Soybean plants accumulated high levels of stress indicators like proline and malondialdehyde when subjected to drought stress. However, genotype G00001 displayed lower levels of proline (4.49 μg g−1 FW) and malondialdehyde (3.70 μmol g−1 FW), indicating that this genotype suffered from less oxidative stress induced by drought stress compared to the other investigated soybean genotypes. Eventually, the G00001 genotype had a greater yield in terms of seeds pod−1 (SP) (1.90) and 100-seed weight (HSW) (14.60 g) under drought conditions. On the other hand, BD2333 exhibited the largest decrease in plant height (37.10%), pod number plant−1 (85.90%), SP (56.20%), HSW (54.20%), gs (90.50%), Pn (71.00%), transpiration rate (59.40%), relative water content (34.40%), Chl a (79.50%), total Chls (72.70%), and carotenoids (56.70%), along with the maximum increase in water saturation deficit (290.40%) and malondialdehyde content (280.30%) under drought compared to control conditions, indicating its higher sensitivity to drought stress. Our findings suggest that G00001 is a promising candidate to consider for field trials and further evaluation of its molecular signature may help breeding other elite cultivars to develop drought-tolerant, high-yielding soybean varieties. Full article
(This article belongs to the Special Issue Drought Responses and Adaptation Mechanisms in Plants)
Show Figures

Figure 1

20 pages, 1919 KiB  
Article
A Mixture of Summer Legume and Nonlegume Cover Crops Enhances Winter Wheat Yield, Nitrogen Uptake, and Nitrogen Balance
by Jun Wang, Upendra M. Sainju and Shaohong Zhang
Nitrogen 2024, 5(4), 871-890; https://doi.org/10.3390/nitrogen5040056 - 2 Oct 2024
Viewed by 256
Abstract
Cover crops protecting soil erosion during the summer fallow in the monsoon weather may enhance dryland winter wheat yield and N relations. We examined the effects of four summer cover crops (soybean (Glycine max L., SB), sudangrass (Sorghum sudanense {Piper} Stapf, [...] Read more.
Cover crops protecting soil erosion during the summer fallow in the monsoon weather may enhance dryland winter wheat yield and N relations. We examined the effects of four summer cover crops (soybean (Glycine max L., SB), sudangrass (Sorghum sudanense {Piper} Stapf, SG), soybean and sudangrass mixture (SS), and no cover crop (CK)) and three N fertilization rates (0, 60, and 120 kg N ha−1) on winter wheat yield, quality, and N relations from 2017–2018 to 2020–2021 in the Loess Plateau of China. Cover crop biomass and N accumulation, soil mineral N, and winter wheat yield, protein concentration, and N uptake were greater for SB and SS than other cover crops at most N fertilization rates and years. The N fertilization rate had variable effects on these parameters. Winter wheat aboveground biomass and grain N productivities were greater for CK than other cover crops at all N fertilization rates and years. Nitrogen balance was greater for SS than other cover crops at 60 and 120 kg N ha−1 in all years. The SS with 120 kg N ha−1 can enhance soil mineral N, winter wheat yield and quality, and N balance compared to CK and SG with or without N fertilization rates. Full article
Show Figures

Figure 1

15 pages, 5627 KiB  
Article
Unraveling the Function of Stress Kinase in the Progeny of Soybean Plants Grown from Low-Temperature Pretreated Seeds
by Mariana Radkova, Miglena Revalska and Anelia Iantcheva
Agriculture 2024, 14(10), 1731; https://doi.org/10.3390/agriculture14101731 - 1 Oct 2024
Viewed by 363
Abstract
The research work was carried out with the progeny of two soybean cultivars, Richy and Izidor, from the years 2019 and 2020. Plants were grown from seeds pretreated with low temperature (2–5 °C) before sowing for two periods of treatment: 12 days marked [...] Read more.
The research work was carried out with the progeny of two soybean cultivars, Richy and Izidor, from the years 2019 and 2020. Plants were grown from seeds pretreated with low temperature (2–5 °C) before sowing for two periods of treatment: 12 days marked as “treated control” (tr. K) and 22 days marked as “treated” (tr.); and “non-treated” (K0) used as a control. Transcriptional profiles of the gene encoding a stress protein kinase were evaluated after the application of abiotic stresses caused by the following: 150 mM NaCl solution/salinity stress/for 24 h; 350 mM mannitol solution/drought stress/for 24 h; and low temperature (4 °C) for 72 h. Transcript levels were established by real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in leaf tissue collected from seedlings of the 2019 and 2020 progeny of “tr. K”, “tr.”, and “K0” samples. Analyses determining the quantity of malondialdehyde (MDA) and total antioxidant capacity (TAC) were performed. The expression of investigated stress kinase was highly upregulated after the application of abiotic stress caused by 150 mM solution of NaCl and to a lesser extent by 350 mM solution of mannitol. Detected transcript levels depend on the type of sample out of “tr. K”, “tr.”, and “K0”; the progeny; and the genotype. Full article
(This article belongs to the Section Crop Production)
Show Figures

Figure 1

14 pages, 292 KiB  
Article
Screening Dietary Fat Sources and Concentrations Included in Low- and High-Forage Diets Using an In Vitro Gas Production System
by Saad M. Hussein, Matias J. Aguerre, Thomas C. Jenkins, William C. Bridges and Gustavo J. Lascano
Fermentation 2024, 10(10), 506; https://doi.org/10.3390/fermentation10100506 - 1 Oct 2024
Viewed by 275
Abstract
Including dietary fat can increase the energy density of diets fed to ruminants, reducing dry matter intake (DMI). Effects of different fat sources on nutrient digestion and fermentation can vary depending on dietary fat concentration and the forage-to-concentrate ratio (F:C). Therefore, this study’s [...] Read more.
Including dietary fat can increase the energy density of diets fed to ruminants, reducing dry matter intake (DMI). Effects of different fat sources on nutrient digestion and fermentation can vary depending on dietary fat concentration and the forage-to-concentrate ratio (F:C). Therefore, this study’s objective was to screen the effects of fat sources supplemented at different concentrations to high- and low-forage diets on in vitro digestibility and fermentation. Treatments included either low forage (LF; 35%) or high forage (HF; 70%) with two fat levels (6 or 9% DM) using six different fat sources, plus control. The control diet (CON) had a basal level of fat in the diet (3% fat; 0% fat inclusion), and fat sources were added to attain 6% or 9% dietary fat and consisted of the following: Coconut oil, CO; Poultry fat, PF; Palm oil, PO; Palm kernel oil, PKO; Soybean oil, SOY; and Ca Salts, MEG. In vitro Gas Production (GP) modules were randomly assigned to treatments in a 2 × 2 × 7 factorial design and were incubated for four 24 h runs. The CO-fed module had the highest dry matter (DM) apparent digestibility (AD) (p < 0.01), followed by SOY and PF. The true DM digestibility (TDMD) and organic matter (OM) AD were the highest in CO (p < 0.01) than the other fat types. The AD for DM, OM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) was higher in LF (p < 0.01). The 6% fat inclusion had a higher GP (109 vs. 103 mL ± 2.09; p < 0.03). Total volatile fatty acid (VFA) concentration was lower in different fat types than the CON and the acetate molar proportion (p > 0.01). The propionate was the lowest for the CON, which increased the acetate to propionate (A:P) ratio (p < 0.01). These results suggest that LF diets with high fat concentrations can be utilized, and different fat sources may improve DM and fiber digestibility. Full article
(This article belongs to the Special Issue In Vitro Digestibility and Ruminal Fermentation Profile, 2nd Edition)
13 pages, 1602 KiB  
Article
Impact of Rumex nepalensis on Performance, Blood Markers, Immunity, Intestinal Microbiology and Histomorphology in Broiler Chicken
by Mohammad T. Banday, Manzoor A. Wani, Sarah I. Othman, Hassan A. Rudayni, Ahmed A. Allam, Mohammad Y. Alshahrani, Essam H. Ibrahim, Showkat Nabi and Sheikh Adil
Vet. Sci. 2024, 11(10), 463; https://doi.org/10.3390/vetsci11100463 - 1 Oct 2024
Viewed by 371
Abstract
The study investigated the impact of utilizing Rumex nepalensis leaf powder (RNL) as a phytogenic feed additive on performance, blood markers, intestinal microbiology and histomorphology in broiler chicken. One hundred eighty day-old Cobb broiler chicks were randomly divided into four treatment groups having [...] Read more.
The study investigated the impact of utilizing Rumex nepalensis leaf powder (RNL) as a phytogenic feed additive on performance, blood markers, intestinal microbiology and histomorphology in broiler chicken. One hundred eighty day-old Cobb broiler chicks were randomly divided into four treatment groups having three replicates with fifteen birds each. Four iso-caloric and iso-nitrogenous diets primarily based on maize–soybean were formulated, viz., CN (Control)—fed basal diet only; RNL2.5 (basal diet + 2.5 g/kg RNL); RNL5 (basal diet + 5 g/kg RNL); and RNL10 (basal diet + 10 g/kg RNL). The results revealed a significant (p < 0.05) increase in body weight gain and feed conversion ratio in dietary treatments compared to CN with best values in RNL10 followed by RNL5. The blood markers like glucose, total protein, creatinine, alanine transaminase (ALT) and aspartate transaminase (AST) showed no significance (p > 0.05) among all the treatments, however total cholesterol significantly (p < 0.05) decreased in RNL5 and RNL10 as against CN. Regarding immune parameters, immunoglobulin G (IgG) and immunoglobulin M (IgM) levels significantly (p < 0.05) enhanced in RNL5 and RNL10. Antioxidant enzyme status showed that superoxide dismutase (SOD) increased and malondialdehyde (MDA) decreased significantly (p < 0.05) in RNL10 compared to CN. Gut health in terms of cecal microbiology and histomorphology of duodenum and jejunum were altered by inclusion of RNL in the broiler diet. A significant decrease (p < 0.05) in coliform count was recorded by incorporation of dietary treatments with highest reduction in RNL10. Lactobacillus count and total viable count did not vary significantly (p > 0.05) among dietary treatments and CN. Duodenal and jejunal villus height and villus height/crypt depth ratio were significantly (p < 0.05) increased in RNL5 and RNL10 compared to RNL2.5 and CN. Thus, it could be concluded that inclusion of Rumex nepalensis leaf powder in the diet resulted in improved performance and better immuno-antioxidant status of broilers. Further, an improvement in the gut health was observed in terms of positive effects on cecal microbiota and intestinal histomorphology of broiler chickens. Full article
(This article belongs to the Section Veterinary Food Safety and Zoonosis)
Show Figures

Figure 1

13 pages, 312 KiB  
Article
Effect of Replacing Corn Grain and Soybean Meal with Field Peas at Different Levels on Feed Intake, Milk Production, and Metabolism in Dairy Cows under a Restrictive Grazing
by Ruben G. Pulido, Ignacio E. Beltran, Jorge A. Aleixo, Álvaro G. Morales, Marcelo Gutierrez, Matias Ponce and Pedro Melendez
Animals 2024, 14(19), 2830; https://doi.org/10.3390/ani14192830 - 30 Sep 2024
Viewed by 326
Abstract
This study assessed the effects of replacing soybean meal (SBM) and corn grain with field peas in the concentrate of grazing dairy cows on milk production, intake, ruminal fermentation, and blood indicators. Twelve multiparous lactating Holstein-Friesian cows were utilized in a replicated 3 [...] Read more.
This study assessed the effects of replacing soybean meal (SBM) and corn grain with field peas in the concentrate of grazing dairy cows on milk production, intake, ruminal fermentation, and blood indicators. Twelve multiparous lactating Holstein-Friesian cows were utilized in a replicated 3 × 3 Latin square design, comprising three periods and three treatments: (1) Pea-0 (Control diet): 6 kg dry matter (DM) of fresh pasture, 7.2 kg DM of grass silage, and 7 kg DM of a concentrate containing 0% pea; (2) Pea-30: Control diet with the concentrate composed of 30% pea; (3) Pea-60: Control diet with the concentrate composed of 60% pea. The effect of treatments on productive and metabolic parameters was evaluated using linear-mixed models. Pasture and total DM intake, milk production, and composition were unaffected by treatments. Despite the concentrates being isonitrogenous and isoenergetic, crude protein (CP) intake was slightly higher in Pea-30 and significantly higher in Pea-60 due to higher pasture CP content in the pasture grazed by these groups, leading to higher milk urea content, though within recommended ranges. Blood parameters showed no significant changes, except for plasma β-hydroxybutyrate, which was lowest in the Pea-60 treatment; however, all values were within ranges not indicative of subclinical ketosis. Ruminal fermentation parameters were similar across treatments. These findings support the use of field peas as a viable alternative to replace SBM and corn grain in concentrates, enabling similar milk production and composition in grazing dairy cows. Full article
(This article belongs to the Collection Feeding Cattle for Health Improvement)
25 pages, 9520 KiB  
Article
Genome-Wide Analysis Elucidates the Roles of AhLBD Genes in Different Abiotic Stresses and Growth and Development Stages in the Peanut (Arachis hypogea L.)
by Cuicui Wu, Baoguo Hou, Rilian Wu, Liuliu Yang, Gang Lan, Zhi Xia, Cairong Cao, Zhuanxia Pan, Beibei Lv and Pengbo Li
Int. J. Mol. Sci. 2024, 25(19), 10561; https://doi.org/10.3390/ijms251910561 - 30 Sep 2024
Viewed by 326
Abstract
The lateral organ boundaries domain (LBD) genes, as the plant-specific transcription factor family, play a crucial role in controlling plant architecture and stress tolerance. However, the functions of AhLBD genes in the peanut plant (Arachis hypogea L.) remain unclear. In [...] Read more.
The lateral organ boundaries domain (LBD) genes, as the plant-specific transcription factor family, play a crucial role in controlling plant architecture and stress tolerance. However, the functions of AhLBD genes in the peanut plant (Arachis hypogea L.) remain unclear. In this study, 73 AhLBDs were identified in the peanut plant and divided into three groups by phylogenetic tree analysis. Gene structure and conserved protein motif analysis supported the evolutionary conservation of AhLBDs. Tandem and segment duplications contributed to the expansion of AhLBDs. The evolutionary relationship analysis of LBD gene family between A. hypogaea and four other species indicated that the peanut plant had a close relationship with the soybean plant. AhLBDs played a very important role in response to growth and development as well as abiotic stress. Furthermore, gene expression profiling and real-time quantitative qRT-PCR analysis showed that AhLBD16, AhLBD33, AhLBD67, and AhLBD72 were candidate genes for salt stress, while AhLBD24, AhLBD33, AhLBD35, AhLBD52, AhLBD67, and AhLBD71 were candidate genes for drought stress. Our subcellular localization experiment revealed that AhLBD24, AhLBD33, AhLBD67, and AhLBD71 were located in the nucleus. Heterologous overexpression of AhLBD33 and AhLBD67 in Arabidopsis significantly enhanced tolerance to salt stress. Our results provide a theoretical basis and candidate genes for studying the molecular mechanism for abiotic stress in the peanut plant. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

24 pages, 4171 KiB  
Review
Spectral Intelligence: AI-Driven Hyperspectral Imaging for Agricultural and Ecosystem Applications
by Faizan Ali, Ali Razzaq, Waheed Tariq, Akhtar Hameed, Abdul Rehman, Khizar Razzaq, Sohaib Sarfraz, Nasir Ahmed Rajput, Haitham E. M. Zaki, Muhammad Shafiq Shahid and Gabrijel Ondrasek
Agronomy 2024, 14(10), 2260; https://doi.org/10.3390/agronomy14102260 - 30 Sep 2024
Viewed by 563
Abstract
Ensuring global food security amid mounting challenges, such as population growth, disease infestations, resource limitations, and climate change, is a pressing concern. Anticipated increases in food demand add further complexity to this critical issue. Plant pathogens, responsible for substantial crop losses (up to [...] Read more.
Ensuring global food security amid mounting challenges, such as population growth, disease infestations, resource limitations, and climate change, is a pressing concern. Anticipated increases in food demand add further complexity to this critical issue. Plant pathogens, responsible for substantial crop losses (up to 41%) in major crops like wheat, rice, maize, soybean, and potato, exacerbate the situation. Timely disease detection is crucial, yet current practices often identify diseases at advanced stages, leading to severe infestations. To address this, remote sensing and Hyperspectral imaging (HSI) have emerged as robust and nondestructive techniques, exhibiting promising results in early disease identification. Integrating machine learning algorithms with image data sets enables precise spatial–temporal disease identification, facilitating timely detection, predictive modeling, and effective disease management without compromising fitness or climate adaptability. By harnessing these cutting-edge technologies and data-driven decision-making, growers can optimize input costs while achieving enhanced yields, making significant strides toward global food security in the face of climate change risks. This review will discuss some of the foundational concepts of remote sensing, several platforms used for remote sensing data collection, successful application of the approach, and its future perspective. Full article
Show Figures

Figure 1

20 pages, 9094 KiB  
Article
The Impact of 3D Printing Technology on the Improvement of External Wall Thermal Efficiency—An Experimental Study
by Beata Anwajler and Piotr Szulc
J. Compos. Sci. 2024, 8(10), 389; https://doi.org/10.3390/jcs8100389 - 30 Sep 2024
Viewed by 282
Abstract
Three-dimensional printing technology continues to evolve, enabling new applications in manufacturing. Extensive research in the field of biomimetics underscores the significant impact of the internal geometry of building envelopes on their thermal performance. Although 3D printing holds great promise for improving thermal efficiency [...] Read more.
Three-dimensional printing technology continues to evolve, enabling new applications in manufacturing. Extensive research in the field of biomimetics underscores the significant impact of the internal geometry of building envelopes on their thermal performance. Although 3D printing holds great promise for improving thermal efficiency in construction, its full potential has yet to be realized, and the thermal performance of printed building components remains unexplored. The aim of this paper is to experimentally examine the thermal insulation characteristics of prototype cellular materials created using 3D additive manufacturing technologies (SLS and DLP). This study concentrates on exploring advanced thermal insulation solutions that could enhance the energy efficiency of buildings, cooling systems, appliances, or equipment. To this end, virtual models of sandwich composites with an open-cell foam core modeled after a Kelvin cell were created. They were characterized by a constant porosity of 0.95 and a pore diameter of the inner core of the composites of 6 mm. The independent variables included the different material from which the composites were made, the non-uniform number of layers in the composite (one, two, three, and five layers) and the total thickness of the composite (20, 40, 60, 80, and 100 mm). The impact of three independent parameters defining the prototype composite on its thermal insulation properties was assessed, including the heat flux (q) and the heat transfer coefficient (U). According to the experimental tests, a five-layer composite with a thickness of 100 mm made of soybean oil-based resin obtained the lowest coefficient with a value of U = 0.147 W/m2·K. Full article
(This article belongs to the Special Issue Sustainable Composite Construction Materials, Volume II)
Show Figures

Figure 1

17 pages, 2314 KiB  
Article
Study on Rumen Degradability and Intestinal Digestibility of Mutton Sheep Diets with Different Concentrate-to-Forage Ratios and Nonfiber Carbohydrates/Neutral Detergent Fiber Ratios
by Xunyu Guo, Lei Sun, Zibin Zheng, Xiaogao Diao, Liwen He, Xiaoling Dong and Wei Zhang
Animals 2024, 14(19), 2816; https://doi.org/10.3390/ani14192816 - 29 Sep 2024
Viewed by 237
Abstract
This study was conducted to investigate the rumen degradability and intestinal digestibility of mutton sheep diets different in concentrate-to-forage ratio, NFC/NDF, and ingredient combination, providing a guideline for the selection of a fattening diet for mutton sheep. Twenty-eight diets composed of four raw [...] Read more.
This study was conducted to investigate the rumen degradability and intestinal digestibility of mutton sheep diets different in concentrate-to-forage ratio, NFC/NDF, and ingredient combination, providing a guideline for the selection of a fattening diet for mutton sheep. Twenty-eight diets composed of four raw material combinations and seven concentrate-to-forage ratios and four three-year-old mutton sheep with permanent rumen fistulas were used in the experiments. The nutrient composition of the diets was first analyzed, and then an in situ method and in vitro three-step method were separately used to measure the rumen degradability and intestinal digestibility, mainly focusing on the effects of dietary concentrate-to-forage ratio and NFC/NDF as well as the effects of soybean meal and soybean meal replacement and peanut vine and peanut vine replacement. The results showed that a dietary concentrate-to-forage ratio of 70:30~80:20 and an NFC/NDF ratio of 1.5~2.0 are recommended for fattening mutton sheep, and low-cost cottonseed meal and rapeseed meal can be feasible alternative protein sources to soybean meal. In addition, the nutritional values of sunflower seed hulls and rice hulls for mutton sheep are lower than that of peanut vine. Such a study can provide practical guidelines for enterprises and farmers, being of important significance for the high-quality development of the mutton sheep industry. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

15 pages, 278 KiB  
Article
Bacillus amyloliquefaciens CU33 Fermented Feather–Soybean Meal Product Improves the Crude Protein Digestibility, Diarrhea Status, and Growth Performance of Goat Kids
by Tsung-Yu Lee, Yueh-Sheng Lee, Chean-Ping Wu, Kun-Wei Chan and Kuo-Lung Chen
Animals 2024, 14(19), 2809; https://doi.org/10.3390/ani14192809 - 29 Sep 2024
Viewed by 438
Abstract
This study investigates the effects of replacing fish meal with fermented feather meal–soybean meal product (FFSMP) from Bacillus amyloliquefaciens CU33 in the starter on growth performance, relative health performance, and digestibility of Alpine goat kids. In trial 1, thirty-two Alpine goat kids (male) [...] Read more.
This study investigates the effects of replacing fish meal with fermented feather meal–soybean meal product (FFSMP) from Bacillus amyloliquefaciens CU33 in the starter on growth performance, relative health performance, and digestibility of Alpine goat kids. In trial 1, thirty-two Alpine goat kids (male) were randomly assigned to dietary supplementation of 2% feather meal–soybean meal mix (FSM), 2% fish meal, or replacing fish meal with 50% or 100% FFSMP (FFSMP-50 or FFSMP-100) in starter (n = 8). In trial 2, sixteen goat kids were selected after trial 1 and used in this digestion trial which began from 12 weeks old. The treatments were the same as in trial 1 (n = 4). In trial 1, the growth performance of the FFSMP groups was better than the FSM group at 0 to 10 weeks (p < 0.05). The fecal consistency index of the FFSMP-100 group was better than the FSM group at 0 to 5 weeks and 5 to 10 weeks. In trial 2, the crude protein (CP) digestibility of the FSM group decreased (p < 0.05). In conclusion, dietary supplementation with 2% FFSMP in goat kids’ diets can improve the growth performance, the CP digestibility, and diarrhea status, and it can completely replace the fish meal in starter diets. Full article
(This article belongs to the Section Animal Nutrition)
16 pages, 5464 KiB  
Article
Estimation of Cotton SPAD Based on Multi-Source Feature Fusion and Voting Regression Ensemble Learning in Intercropping Pattern of Cotton and Soybean
by Xiaoli Wang, Jingqian Li, Junqiang Zhang, Lei Yang, Wenhao Cui, Xiaowei Han, Dulin Qin, Guotao Han, Qi Zhou, Zesheng Wang, Jing Zhao and Yubin Lan
Agronomy 2024, 14(10), 2245; https://doi.org/10.3390/agronomy14102245 - 29 Sep 2024
Viewed by 255
Abstract
The accurate estimation of soil plant analytical development (SPAD) values in cotton under various intercropping patterns with soybean is crucial for monitoring cotton growth and determining a suitable intercropping pattern. In this study, we utilized an unmanned aerial vehicle (UAV) to capture visible [...] Read more.
The accurate estimation of soil plant analytical development (SPAD) values in cotton under various intercropping patterns with soybean is crucial for monitoring cotton growth and determining a suitable intercropping pattern. In this study, we utilized an unmanned aerial vehicle (UAV) to capture visible (RGB) and multispectral (MS) data of cotton at the bud stage, early flowering stage, and full flowering stage in a cotton–soybean intercropping pattern in the Yellow River Delta region of China, and we used SPAD502 Plus and tapeline to collect SPAD and cotton plant height (CH) data of the cotton canopy, respectively. We analyzed the differences in cotton SPAD and CH under different intercropping ratio patterns. It was conducted using Pearson correlation analysis between the RGB features, MS features, and cotton SPAD, then the recursive feature elimination (RFE) method was employed to select image features. Seven feature sets including MS features (five vegetation indices + five texture features), RGB features (five vegetation indices + cotton cover), and CH, as well as combinations of these three types of features with each other, were established. Voting regression (VR) ensemble learning was proposed for estimating cotton SPAD and compared with the performances of three models: random forest regression (RFR), gradient boosting regression (GBR), and support vector regression (SVR). The optimal model was then used to estimate and visualize cotton SPAD under different intercropping patterns. The results were as follows: (1) There was little difference in the mean value of SPAD or CH under different intercropping patterns; a significant positive correlation existed between CH and SPAD throughout the entire growth period. (2) All VR models were optimal when each of the seven feature sets were used as input. When the features set was MS + RGB, the determination coefficient (R2) of the validation set of the VR model was 0.902, the root mean square error (RMSE) was 1.599, and the relative prediction deviation (RPD) was 3.24. (3) When the features set was CH + MS + RGB, the accuracy of the VR model was further improved, compared with the feature set MS + RGB, the R2 and RPD were increased by 1.55% and 8.95%, respectively, and the RMSE was decreased by 7.38%. (4) In the intercropping of cotton and soybean, cotton growing under 4:6 planting patterns was better. The results can provide a reference for the selection of intercropping patterns and the estimation of cotton SPAD. Full article
(This article belongs to the Special Issue AI, Sensors and Robotics for Smart Agriculture—2nd Edition)
Show Figures

Figure 1

19 pages, 11091 KiB  
Article
Styphnolobium japonicum Fruit and Germinated Soybean Embryo Complex Extract for Postmenopausal-Symptom Relief
by Jeong-Won Ahn, Hyun-Soo Kim, Kongara Damodar, Hee-Hyun Shin, Kyung-Mi Kim, Jung-Youl Park, Su-Kil Jang, Yeong-Min Yoo, Jae-Chul Jung and Seong-Soo Joo
Nutrients 2024, 16(19), 3297; https://doi.org/10.3390/nu16193297 - 28 Sep 2024
Viewed by 497
Abstract
Background/Objectives: Hormonal alterations during menopause result in substantial physiological changes. Although hormone replacement therapy (HRT) is widely used as a treatment strategy for these changes, its use remains controversial due to its associated risks. Plant isoflavones are phytoestrogens that are considered a potential [...] Read more.
Background/Objectives: Hormonal alterations during menopause result in substantial physiological changes. Although hormone replacement therapy (HRT) is widely used as a treatment strategy for these changes, its use remains controversial due to its associated risks. Plant isoflavones are phytoestrogens that are considered a potential alternative therapy for postmenopausal syndrome. We aimed to investigate the efficacy of ethanolic extracts from Styphnolobium japonicum fruit (SJF) and germinated soybean embryo (GSE) in alleviating prominent menopausal symptoms. Methods: A cell model (MCF7 human breast cancer cells) was used to investigate estrogen-like activity. A rat ovariectomy model was used to simulate estrogen depletion after menopause and to evaluate the efficacy of the SJF–GSE complex extract at ratios of 1:1, 1:2, and 2:1. Results: Treatment with the SJF–GSE extract elicited estrogen-like effects, raising pS2 and estrogen receptor α expression in MCF7 cells. The extract was found to contain 48–72 mg/g sophoricoside and 8–12 mg/g soyasaponin 1, identified as active compounds. In ovariectomized rats, the extract effectively reduced body weight and fat content, alleviated vasomotor symptoms, improved vaginal mucosal health, and exerted osteoprotective effects by enhancing bone density and structure, reducing bone-resorption markers and positively altering estradiol levels and lipid profiles. Conclusions: The SJF–GSE extract, working synergistically, provides a safe and effective alternative to HRT for managing postmenopausal symptoms and enhancing bone health, without adverse effects. These findings support the inclusion of SJF and GSE in health-functional foods and underscore the importance of further research into plant-based therapies for menopause. Full article
(This article belongs to the Special Issue Dietary Supplements in Human Health and Disease)
Show Figures

Graphical abstract

Back to TopTop