University of RRISTON

ABSTRACT

Typical approaches for action recognition in videos rely on labelled start and end times for training.

This supervision is not only expensive to acquire but importantly highly subjective.

In this paper, we:

- Use single timestamps located around each action instance in untrimmed videos as weak supervision;
- Temporally refine the supervision used to train a classifier, starting from the single timestamps;
- Testing the classifier on trimmed video segments, we show that our method converges to the discriminative action segments, for 3 different datasets (THUMOS, BEOID and EPIC Kitchens).

APPROACH

- We start from single timestamps, roughly located close to the action instances;
- We replace unavailable action boundaries with sampling distributions modelled by a plateau function:

$$g(x \mid c, w, s) = \frac{1}{(e^{s(x-c-w)}+1)(e^{s(-x+c-w)}+1)}$$

- We initialise one sampling distribution per action, centring the plateau on the single timestamp;
- Initial plateaus might enclose irrelevant frames. We thus update the sampling distributions, fitting multiple update proposals per distribution, using the softmax scores;
- We rank the proposals to select the most confident updates, using a Curriculum Learning approach. We reward proposals whose plateaus contain frames that on average score higher than the frames enclosed by the current plateau;
- We iteratively update the sampling distributions until convergence, which is measured using the proposals' scores.

REFERENCES

- [1] Dima Damen, Hazel Doughty, Giovanni Maria Farinella, Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide Moltisanti, Jonathan Munro, Toby Perrett, Will Price, and Michael Wray. Scaling egocentric vision: The EPIC-KITCHENS Dataset. In ECCV, 2018.
- [2] Limin Wang, Yuanjun Xiong, Dahua Lin, and Luc Van Gool. UntrimmedNets for weakly supervised action recognition and detection. In CVPR, 2017.

Action Recognition from Single Timestamp Supervision in Untrimmed Videos

Davide Moltisanti¹ Sanja Fidler² Dima Damen¹

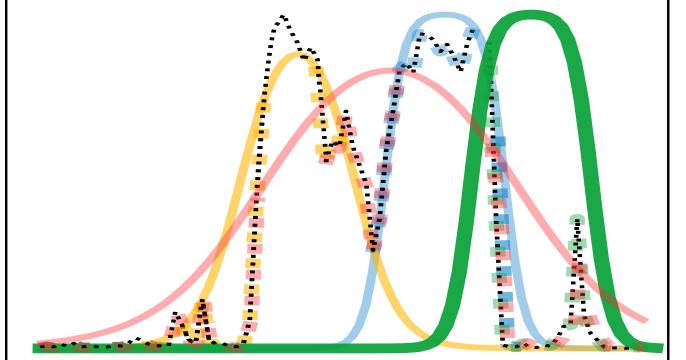
¹University of Bristol, UK

INITIALISING THE MODEL

Figure 1: Replacing action boundaries with sampling distributions in an untrimmed video, given single timestamps (coloured dots at the centre of each plateau). The initial distributions may overlap (e.g. 'put jar', 'take spoon') and contain background frames. We iteratively refine the distributions using the classifier response during training.

UPDATING THE SAMPLING DISTRIBUTIONS

•••• P(y|x) [softmax scores]



 $\rho(\beta_i) = \frac{1}{|\mathcal{X}|} \sum_{x \in \mathcal{X}} P(y|x)$ $\psi(\gamma_j) = \rho(\gamma_j) - \rho(\beta_i)$

$$\psi(\gamma_{j+2}) > \psi(\gamma_{j+1}) > \psi(\gamma_j)$$

update proposals

.

 $---- g(x|\gamma_{j+2})$ •••• 2

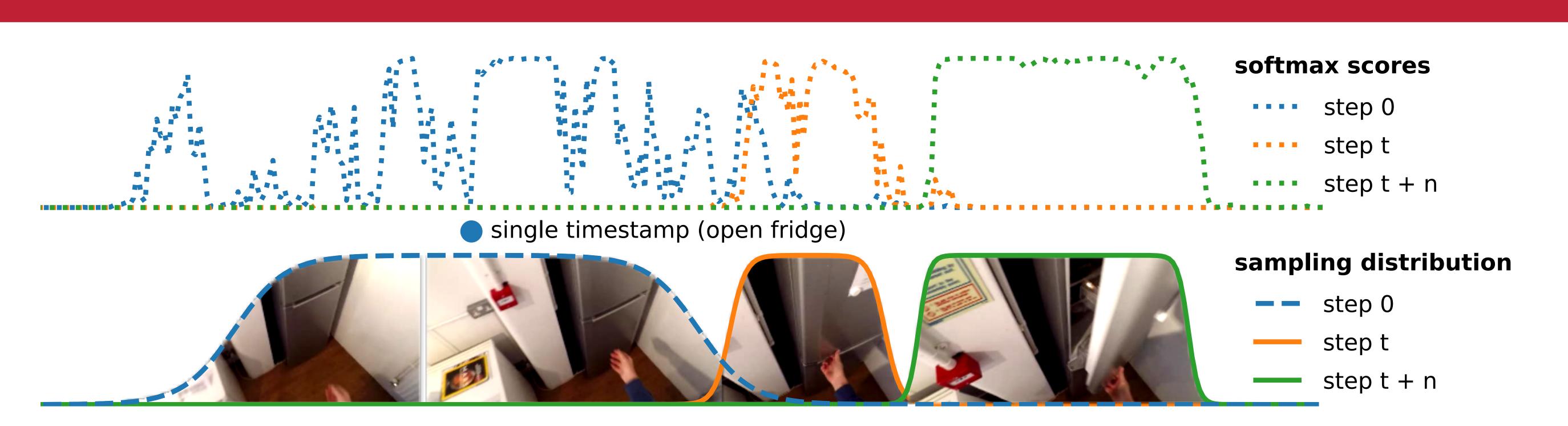


Figure 4: Fitting and ranking update proposals.

•••• }

 $g(x|\gamma_{j+1})$

RESULTS initial sampling distribution single timestamp _____ ground truth frames updated sampling distribution (intermediate) updat cricket I push drawer put lid

Figure 6: Qualitative results on the three datasets. Ground truth frames used only for plotting.

² University of Toronto, Canada | NVIDIA | Vector Institute

Figure 5: Updating the sampling distribution using the classifier response - example from action 'open fridge' in EPIC Kitchens [1]. Different colours indicate different training iterations.

ted sampling distribution (final)	Data		
	THU		
press button			
before after	EPIC		
wash fork			
	Tabl		

Dataset	CL h	Before update	After update
	0.25	26.10	28.88
	0.50	32.69	55.15
THUMOS 14	0.75	33.59	56.42
	1.00	63.41	63.53
	0.25	47.97	52.70
	0.50	71.62	83.11
BEOID	0.75	74.32	83.11
	1.00	64.86	70.27
	0.25	20.47	22.83
EPIC Kitchens	0.50	21.39	25.35
	0.75	20.73	23.86
	1.00	23.55	24.17

Table 3: Top-1 accuracy obtained with single timestamp supervision before and after update.

LINKS

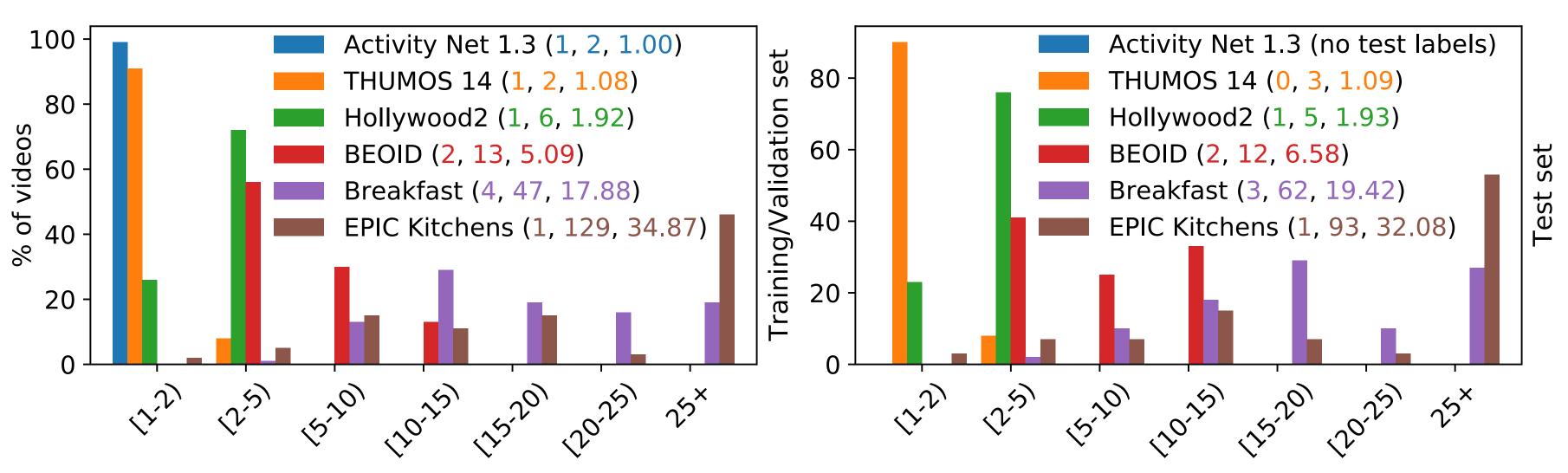
Code available at:

bitbucket.org/dmoltisanti/action_recognition_single_timestamps

Project webpage:

people.cs.bris.ac.uk/damen/single_timestamps

COMPARING LEVELS OF TEMPORAL SUPERVISION



Number of different actions per video

Number of different actions per video

Figure 2: Different actions per video for various datasets.

Set	Dataset	N. of classes	N. of videos	N. of actions	Avg video length	Avg classes per video	Avg actions per video
Train	THUMOS 14	20	200	3003	208.90	1.08	15.01
	BEOID	34	46	594	61.31	5.09	12.91
	EPIC Kitchens	274	79	7060	477.37	34.87	89.36
Test	THUMOS 14	20	210	3307	217.16	1.09	15.74
	BEOID	34	12	148	57.78	6.58	12.33
	EPIC Kitchens	274	26	1949	399.62	32.08	74.96

Table 1: Datasets information. Average video length is in seconds.

Baseline		U. Net[2]		Ours	
Supervision	APV	Video-level	TS	TS in GT	Full
THUMOS 14	1.08	64.92	66.68	64.53	67.10
BEOID	5.09	28.37	85.14	88.51	87.83
EPIC Kitchens	34.87	2.20	26.22	32.53	35.97

Table 2: Comparison between different levels of temporal supervision. APV indicates the average number of unique actions per training video.

CONVERGENCE

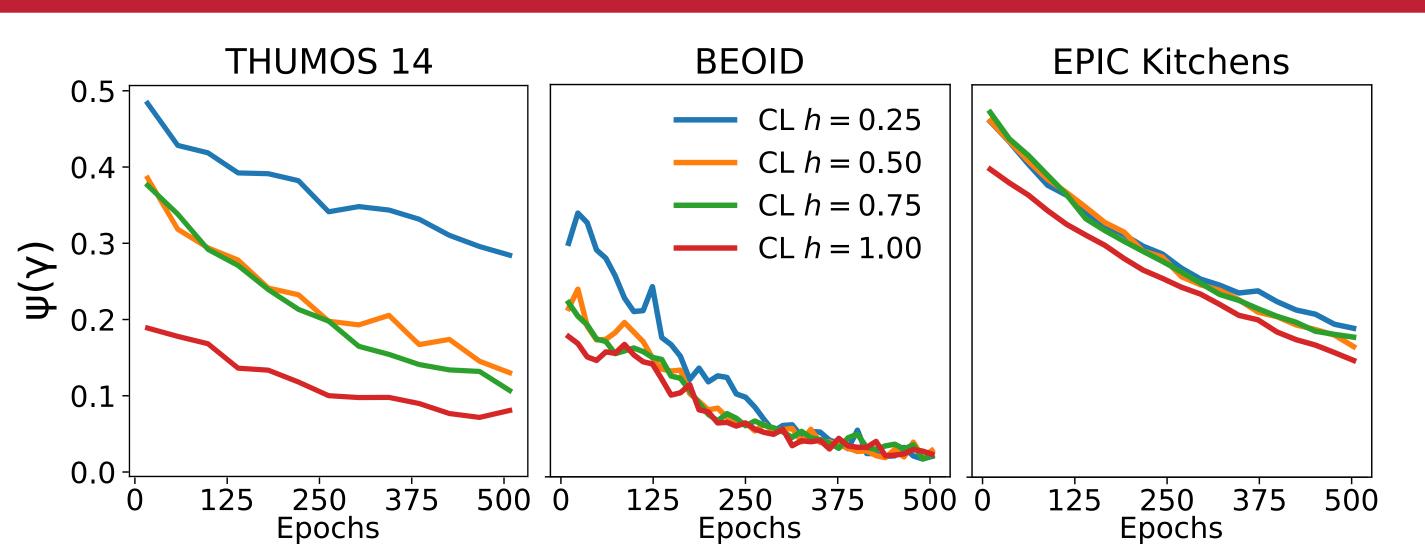


Figure 3: Average confidence of selected update proposals over training epochs.