2-Nitropropane (2-NP) is a genotoxic hepatocarcinogen in rats. The genotoxicity of the compound has been attributed to a sulfotransferase-mediated formation of DNA-reactive species from the anionic form of 2-NP, propane 2-nitronate (P2N). Several observations have suggested that sulfotransferases (SULTs) 1A1 and/or 1C1 may be important in the activation of P2N to a genotoxicant in rat liver, but a definite proof is lacking. In order to identify the sulfotransferase(s) of rat liver that are capable of activating P2N, we have investigated the genotoxicity of P2N in various V79-derived cell lines engineered for expression of individual forms of rat hepatic sulfotransferases. Genotoxicity was assessed by measuring the induction of DNA repair synthesis. 1-Hydroxymethylpyrene (HMP), which is metabolically activated by most sulfotransferases, served as a positive control. Neither P2N nor HMP induced DNA repair in the parental V79-MZ cells, which do not show any sulfotransferase activity. P2N was also inactive in V79-rHSTa and V79-rHST20 cells, which express specific hydroxysteroid sulfotransferases. By contrast, a clear and concentration-dependent induction of repair synthesis by P2N was observed in V79-rPST-IV and V79-rST1C1 cells, which express rat SULT1A1 and SULT1C1, respectively. HMP was genotoxic in all sulfotransferase-expressing cell lines. Acetone oxime (AO), the tautomeric form of the first reduction product of 2-NP, 2-nitrosopropane, was inactive in all cell lines. The results corroborate the essential role of sulfotransferases in the metabolic activation of P2N to genotoxic products and identify two rat sulfotransferases which are capable of catalyzing the activation step.
Copyright 1999 Elsevier Science B.V.