Phosphatidylinositol metabolism plays a central role in signaling pathways in animals and is also believed to be of importance in signal transduction in higher plants. We report here the molecular cloning of a cDNA encoding a previously unidentified 126-kDa phosphatidylinositol (PI) 4-kinase (AtPI4Kbeta) from the higher plant Arabidopsis thaliana. The novel protein possesses the conserved domains present in animal and yeast PI 4-kinases, namely a lipid kinase unique domain and a catalytic domain. An additional domain, approximately 300 amino acids long, containing a high percentage (46%) of charged amino acids is specific to this plant enzyme. Recombinant AtPI4Kbeta expressed in baculovirus-infected insect (Spodoptera frugiperda) cells phosphorylated phosphatidylinositol exclusively at the D4 position of the inositol ring. Recombinant protein was maximally activated by 0.6% Triton X-100 but was inhibited by adenosine with an IC50 of approximately 200 microM. Wortmannin at a concentration of 10 microM inhibited AtPI4Kbeta activity by approximately 90%. AtPI4Kbeta transcript levels were similar in all tissues analyzed. Light or treatment with hormones or salts did not change AtPI4Kbeta transcript levels to a great extent, indicating constitutive expression of the AtPI4Kbeta gene.