Radiofrequency (RF) generated thermal brain lesions are widely used in functional neurosurgery. The size, shape and development of the lesions depends on system parameter settings and the electrode configuration. Difficulties in studying the effect of these factors in vivo stimulated us to develop an in vitro system for standardized comparison between different electrodes and physical parameters. A computer-assisted video system was set-up allowing continuous video recording of RF-generated coagulations in either a standard albumin solution or in the fresh white of a hen's egg as transparent test substrates. Ten lesions were made with each test electrode (two bipolar and three monopolar) in each of the two substrates at 70 degrees, 80 degrees and 90 degrees C (t = 60 sec). Due to the better homogeneity the lesions in the albumin solution were much more regular and reproducible. This made it possible to calculate the size (width 2.2 +/- 0.1 to 5.3 +/- 0.1 mm and length 3.0 +/- 0.1 to 8.7 +/- 0.3 mm) as well as the volume (8.5 +/- 1.4 mm3 to 133.5 +/- 26.8 mm3). It is concluded that this in vitro system offers a reproducible way to study and document the effect of different electrode configurations and RF-generator settings on the formation of a heat lesion. Even if the results are not directly applicable to the living human brain they give an estimate of the form and size of a coagulation lesion and can be of value for standardized comparisons between different electrodes.