Crosslinking has been suggested as one of the mechanisms involved in the aging process. Among the various random or enzyme-mediated crosslinking reactions, transglutaminase (TGase)-catalyzed crosslinking activity has been proposed for its possible involvement in cell proliferation, differentiation, carcinogenesis, programmed death, and aging. Moreover, recent findings of TGase C as a putative signal transducer and cell cycle regulator has renewed interest in the study of TGase C in relation to aging phenomena. The ubiquitous presence of TGase C compared to the organ-specific localization of other types of TGases has attracted special attention as a cellular aging device. In the present investigation for in vitro studies, we have compared the pattern of TGase C in young and old human red blood cells, separated by density differentiation, and in early and late-passage or hydrogen peroxide-treated human primary fibroblasts. For in vivo study, we monitored the age-dependent changes of TGase C in the liver and brain tissues of 4, 12, 18, and 24-month-old Sprague-Dawley rats. We obtained evidence that both the activity and protein levels of TGase C were high in old RBC and late-passage or hydrogen peroxide-treated fibroblasts. Similar findings were seen in liver and brain tissue such as age-dependent increases in TGase activity and protein level in an organ-specific pattern. These data suggest that TGase C might play an active role in the cellular process with age.