Plasma-soluble CD30 (sCD30) is the result of proteolytic splicing from the membrane-bound form of CD30, a putative marker of type 2 cytokine-producing cells. We measured sCD30 levels in children with tuberculosis, a disease characterized by prominent type 1 lymphocyte cytokine responses. We postulated that disease severity and nutritional status would alter cytokine responses and therefore sCD30 levels. Samples from South African children enrolled prospectively at the time of diagnosis of tuberculosis were analyzed. (Patients were originally enrolled in a randomized, double-blind placebo-controlled study of the effects of oral vitamin A supplementation on prognosis of tuberculosis.) Plasma samples collected at the time of diagnosis and 6 and 12 weeks later (during antituberculosis therapy) were analyzed. sCD30 levels were measured by enzyme immunoassay. The 91 children included in the study demonstrated high levels of sCD30 at diagnosis (median, 98 U/liter; range, 11 to 1,569 U/liter). Although there was a trend toward higher sCD30 levels in more severe disease (e.g., culture-positive disease or miliary disease), this was not statistically significant. Significantly higher sCD30 levels were demonstrated in the presence of nutritional compromise: the sCD30 level was higher in patients with a weight below the third percentile for age, in those with clinical signs of kwashiorkor, and in those with a low hemoglobin content. There was minimal change in the sCD30 level after 12 weeks of therapy, even though patients improved clinically. However, changes in sCD30 after 12 weeks differed significantly when 46 patients (51%) who received vitamin A were compared with those who had received a placebo. Vitamin A-supplemented children demonstrated a mean (+/- standard error of the mean) decrease in sCD30 by a factor of 0.99 +/- 0.02 over 12 weeks, whereas a factor increase of 1.05 +/- 0.02 was demonstrated in the placebo group (P = 0.02). We conclude that children with tuberculosis had high sCD30 levels, which may reflect the presence of a type 2 cytokine response. Nutritional compromise was associated with higher sCD30 levels. Vitamin A therapy resulted in modulation of sCD30 levels over time.