Eukaryotic initiation factor 2alpha kinase and phosphatase activity during postischemic brain reperfusion

Exp Neurol. 1999 Feb;155(2):221-7. doi: 10.1006/exnr.1998.6986.

Abstract

When ischemic brain is reperfused, there is in vulnerable neurons immediate inhibition of protein synthesis associated with a large increase in phosphorylation of the alpha-subunit of eukaryotic initiation factor 2 [eIF2alpha, phosphorylated form eIF2alpha(P)]. We examined eIF2alpha kinase and eIF2alpha(P) phosphatase activity in brain homogenate postmitochondrial supernatants obtained from rats after 3 to 30 min of global brain ischemia (cardiac arrest), after 5 min of ischemia and 5 min of reperfusion (5R), and after 10 min of ischemia and 90 min reperfusion (90R). Because it has been suggested that PKR might be specifically responsible for producing eIF2alpha(P) during reperfusion, we also examined in brain homogenates from wild-type and PKR0/0 C57BL/6J x 129/SV mice the effect of 5 min of ischemia and 5 min of reperfusion on eIF2alpha(P). Cytosolic brain eIF2alpha(P) in the 5R and 90R rats was 18- and 23-fold that of nonischemic controls without any change in the rate of eIF2alpha(P) dephosphorylation. There was no change in eIF2alpha kinase activity between 3 and 30 min of ischemia but an 85% decrease in the 5R group; the 90R group was similar to controls. In wild-type and PKR0/0 mice total eIF2alpha was identical, and there was an identical 16-fold increase in eIF2alpha(P) at 5 min of reperfusion. Our observations contradict hypotheses that PKR activation, loss of eIF2alpha(P) phosphatase activity, or any general increase in eIF2alpha kinase activity are responsible for reperfusion-induced phosphorylation of eIF2alpha, and we suggest that the mechanism may involve regulation of the availability of eIF2alpha to a kinase.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Autoradiography
  • Blotting, Western
  • Brain / enzymology
  • Ischemic Attack, Transient / enzymology*
  • Mice
  • Mice, Inbred C57BL
  • Phosphoprotein Phosphatases / biosynthesis
  • Phosphoprotein Phosphatases / metabolism*
  • Phosphorylation
  • Rats
  • Rats, Long-Evans
  • Reperfusion Injury / enzymology*
  • eIF-2 Kinase / biosynthesis
  • eIF-2 Kinase / metabolism*

Substances

  • eIF-2 Kinase
  • eIF-2 phosphatase
  • Phosphoprotein Phosphatases