Epstein-Barr virus nuclear antigen 2 (EBNA2) is essential for B-cell immortalization by EBV, most probably by its ability to transactivate a number of cellular and viral genes. EBNA2-responsive elements (EBNA2REs) have been identified in several EBNA2-regulated viral promoters, each of them carrying at least one RBP-Jkappa recognition site. RBP-Jkappa recruits EBNA2 to the EBNA2RE and, once complexed to EBNA2, is converted from a repressor into an activator. An activated form of the cellular receptor Notch also interacts with RBP-Jkappa, providing a link between EBNA2 and Notch signalling. To determine whether activated Notch is able to transactivate EBNA2-responsive viral promoters, we performed cotransfection experiments with activated mouse Notch1 (mNotch1-IC) and luciferase constructs of the BamHI C, LMP1, and LMP2A promoters. We present here evidence that mNotch1-IC transactivates viral promoters known to be regulated by EBNA2. As shown for EBNA2, mutations or deletions of the RBP-Jkappa sites diminish or eliminate mNotch1-IC-mediated transactivation of the promoters, pointing to an essential role for Notch-RBP-Jkappa interaction. In addition to RBP-Jkappa, other cellular factors may bind within the EBNA2REs of viral promoters. While some factors appear to play an important role in both EBNA2- and mNotch1-IC-mediated transactivation, others are only important for the activity of either EBNA2 or mNotch1-IC. We could observe specific mNotch1-IC-responsive regions, thereby throwing more light upon which cofactors interact with EBNA2 and mNotch1-IC, thus enabling them to become functionally transactivators in vivo.