Purpose: To determine the survival benefit and cost-effectiveness of screening Ashkenazi Jewish women for three specific BRCA1/2 gene mutations.
Methods: We used a Markov model and Monte Carlo analysis to estimate the survival benefit and cost-effectiveness of screening for three specific mutations in a population in which their prevalence is 2.5% and the associated cancer risks are 56% for breast cancer and 16% for ovarian cancer. We assumed that the sensitivity and specificity of the test were 98% and 99%, respectively, that bilateral prophylactic oophorectomy would reduce ovarian cancer risk by 45%, and that bilateral prophylactic mastectomy would reduce breast cancer risk by 90%. We used Medicare payment data for treatment costs and Surveillance, Epidemiology, and End Results data for cancer survival.
Results: Our model suggests that genetic screening of this population could prolong average nondiscounted survival by 38 days (95% probability interval, 22 to 57 days) for combined surgery, 33 days (95% probability interval, 18 to 43 days) for mastectomy, 11 days (95% probability interval, 4 to 25 days) for oophorectomy, and 6 days (95% probability interval, 3 to 8 days) for surveillance. The respective cost-effectiveness ratios per life-year saved, with a discount rate of 3%, are $20,717, $29,970, $72,780, and $134,273.
Conclusion: In this Ashkenazi Jewish population, with a high prevalence of BRCA1/2 mutations, genetic screening may significantly increase average survival and, depending on costs and screening/treatment strategies, may be cost-effective by the standards of accepted cancer screening tests. According to our model, screening is cost-effective only if all women who test positive undergo prophylactic surgery. These estimates require confirmation through prospective observational studies and clinical trials.