A highly reliable and efficient technology has been developed for high-throughput DNA polymorphism screening and large-scale genotyping. Photolithographic synthesis has been used to generate miniaturized, high-density oligonucleotide arrays. Dedicated instrumentation and software have been developed for array hybridization, fluorescent detection, and data acquisition and analysis. Specific oligonucleotide probe arrays have been designed to rapidly screen human STSs, known genes and full-length cDNAs. This has led to the identification of several thousand biallelic single-nucleotide polymorphisms (SNPs). Meanwhile, a rapid and robust method has been developed for genotyping these SNPs using oligonucleotide arrays. Each allele of an SNP marker is represented on the array by a set of perfect match and mismatch probes. Prototype genotyping chips have been produced to detect 400, 600 and 3000 of these SNPs. Based on the preliminary results, using oligonucleotide arrays to genotype several thousand polymorphic loci simultaneously appears feasible.