The serine repeat antigen (SERA) is a vaccine candidate antigen of Plasmodium falciparum. Immunization of mice with Escherichia coli-produced recombinant protein of the SERA N-terminal domain (SE47') induced an antiserum that was inhibitory to parasite growth in vitro. Affinity-purified mouse antibodies specific to the recombinant protein inhibited parasite growth between the schizont and ring stages but not between the ring and schizont stages. When Percoll-purified schizonts were cultured with the affinity-purified SE47'-specific antibodies, schizonts and merozoites were agglutinated. Indirect-immunofluorescence assays with unfixed parasite cells showed that SE47'-specific immunoglobulin G (IgG) bound to SERA molecules on rupturing schizonts and merozoites but the IgG did not react with the schizont-infected erythrocytes (RBC). Furthermore, double-fluorescence staining against SE47'-specific IgG and anti-human RBC membrane IgG showed that the RBC membrane disappeared from SE47'-specific-IgG-bound schizonts after cultivation. These observations suggest that the SE47'-specific antibodies inhibit parasite growth by cross-linking SERA molecules that are associated with merozoites in rupturing schizonts with partly broken RBC and parasitophorous vacuole membranes, blocking merozoite release.