Major features of pancreatic secretion stimulated by a meal depend on intestinal phase mechanisms. However, an intrajejunal (i.j.) meal infusion is widely used for the treatment of inflammatory pancreatic diseases when the resting of the gland is desired. This study was undertaken to compare the effects of an intragastric (i.g.) and an i.j. complete fluid (Lundh) test meal on pancreatic enzyme secretion. Eight men (mean age, 43 years; range, 31-48) free from pancreatic disease were studied. Pancreatic secretion was measured via a multiple-lumen tube by aspiration of the duodenal juice. After a fasting period, the Lundh test meal was placed in the stomach or the upper jejunum. After the i.g. administration of the test meal, the aspirated duodenal juice was reinfused into the jejunum. The effect of atropine infusion (0.5 microg/kg/h) on the pancreatic enzyme secretion was studied. The pancreatic amylase, trypsin, and lipase outputs were determined. The plasma levels of cholecystokinin (CCK) and of gastrin were measured by bioassay and radioimmunoassay, respectively. The trypsin, amylase, and lipase secretions increased significantly after either an i.g. or an i.j. test meal intake. The trypsin, amylase, and lipase outputs were significantly decreased during the i.j. perfusion as compared with i.g. administration. The gastrin levels increased significantly after i.g., but remained unchanged after i.j. administration. The CCK release attained its maximum 40 and 60 min after the i.g. and i.j. test meal, respectively. However, the CCK release was significantly lower during the i.j. administration as compared with i.g. perfusion. An atropine infusion significantly reduced the i.g. and i.j. test meal-stimulated enzyme outputs. An i.j.-administered meal stimulates the pancreatic enzyme secretion, but this effect is significantly lower than that which occurs on i.g. administration. The i.j. meal-stimulated secretion of pancreatic enzymes is subject to both cholinergic and peptidergic regulation. The deficiency of gastrin and the delayed and decreased CCK release are believed to account for the reduced enzyme output.