We describe the development of a novel biodegradable polymer designed to present bioactive motifs at the surfaces of materials of any architecture. The polymer is a block copolymer of biotinylated poly(ethylene glycol) (PEG) with poly(lactic acid) (PLA); it utilizes the high-affinity coupling of the biotin-avidin system to undergo postfabrication surface engineering. We show, using surface plasmon resonance analysis (SPR) and confocal microscopy that surface engineering can be achieved under aqueous conditions in short time periods. These surfaces interact with cell surface molecules and generate beneficial responses as demonstrated by the model study of integrin-mediated spreading of endothelial cells on polymer surfaces presenting RGD peptide adhesion sequences.
Copyright 1998 John Wiley & Sons, Inc.