The effect of redox potential changes on reductive dechlorination of pentachlorophenol and the degradation of acetate by a mixed, methanogenic culture

Biotechnol Bioeng. 1999 Apr 5;63(1):69-78. doi: 10.1002/(sici)1097-0290(19990405)63:1<69::aid-bit7>3.0.co;2-2.

Abstract

The effect of changes in redox potential on methanogenesis from acetate, and on the reductive dechlorination of pentachlorophenol (PCP), was evaluated using a computer-monitored and feedback-controlled bioreactor. PCP was transformed via 2,3,4, 5-tetrachlorophenol (2,3,4,5-TeCP) to 3,4,5-trichlorophenol (3,4, 5-TCP). In 6- to 12-d experiments, pH, acetate concentration, and temperature were held constant; the redox potential, defined here as the potential measured at a platinum electrode (EPt), was maintained at different set points, while transformation of multiple PCP additions was monitored. Without redox potential control, the value of EPt for the culture was approximately -0.26 V (vs. SHE). The value of EPt was elevated from -0.26 V for periods up to 10 h by computer-controlled addition of H2O2 or K3Fe(CN)6. Methanogenesis continued during a relatively mild shift of EPt to -0.2 V with H2O2, but was halted when EPt was raised to -0.1 V with either H2O2 or K3Fe(CN)6. Methanogenesis resumed when EPt returned to -0.26 V. During periods in which EPt was elevated significantly and methanogenesis stopped, transformation of PCP and 2,3,4,5-TeCP continued at progressively slower rates, but the rate of 2,3,4, 5-TeCP transformation was diminished to a greater extent. When a small volume of pure H2 was added to the reactor headspace, while EPt was maintained at -0.1 V, reductive dechlorination rates increased dramatically. Lower H2 concentrations during periods of oxidant addition, perhaps due to the effect of the oxidant on H2-producing bacteria, may contribute to decreased reductive dechlorination rates. Copyright 1999 John Wiley & Sons, Inc.