N-Formyl-Met-Leu-Phe (FMLP) and phorbol 12-myristate 13-acetate (PMA) caused a synergistic augmentation of superoxide anion (O2-) production in neutrophil-like HL-60 cells differentiated with dibutyryl cAMP. The present study was undertaken to investigate the mechanism of the synergistic augmentation of O2- production. FMLP increased intracellular free Ca2+ concentration ([Ca2+]i), which was slightly suppressed by PMA and completely inhibited by an intracellular Ca2+ chelating agent, O,O'-bis(2-aminophenyl)ethyleneglycol-N,N,N',N'-tetraacetic acid tetraacetoxymethyl ester (BAPTA-AM). Although FMLP-induced O2- production was inhibited by BAPTA-AM, a major part of the synergistic augmentation of O2- production by FMLP and PMA remained after BAPTA-AM treatment, suggesting that a Ca2+-independent mechanism might be involved in the augmentation. FMLP and PMA caused an activation of phospholipase D (PLD) almost additively in a Ca2+-sensitive manner. The synergistic activation of mitogen-activated protein kinase (MAPK) was evoked by combined addition of PMA and FMLP in a BAPTA-AM resistant manner. However, PD98059, a MAPK kinase inhibitor, did not affect the synergistic augmentation of O2- production, although it potently inhibited the synergistic augmentation of tyrosine phosphorylation of MAPK. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, inhibited FMLP-induced O2- production, but it did not inhibit the synergistic augmentation of O2- production by PMA and FMLP. In contrast, staurosporine and GF109203X, protein kinase C inhibitors, reduced the synergistic augmentation induced by PMA and FMLP. In addition, pertussis toxin (PT) abolished the synergistic augmentation of O2- production. It is concluded that the synergistic augmentation of O2- production induced by PMA and FMLP is mediated through a PT-sensitive G protein and a protein kinase C in a Ca2+-independent manner.